diff options
| author | Philipp Tanlak <philipp.tanlak@gmail.com> | 2025-11-24 20:54:57 +0100 |
|---|---|---|
| committer | Philipp Tanlak <philipp.tanlak@gmail.com> | 2025-11-24 20:57:48 +0100 |
| commit | b1e2c8fd5cb5dfa46bc440a12eafaf56cd844b1c (patch) | |
| tree | 49d360fd6cbc6a2754efe93524ac47ff0fbe0f7d /node_modules/fraction.js/bigfraction.js | |
Docs
Diffstat (limited to 'node_modules/fraction.js/bigfraction.js')
| -rw-r--r-- | node_modules/fraction.js/bigfraction.js | 899 |
1 files changed, 899 insertions, 0 deletions
diff --git a/node_modules/fraction.js/bigfraction.js b/node_modules/fraction.js/bigfraction.js new file mode 100644 index 0000000..038ca05 --- /dev/null +++ b/node_modules/fraction.js/bigfraction.js @@ -0,0 +1,899 @@ +/** + * @license Fraction.js v4.2.1 20/08/2023 + * https://www.xarg.org/2014/03/rational-numbers-in-javascript/ + * + * Copyright (c) 2023, Robert Eisele (robert@raw.org) + * Dual licensed under the MIT or GPL Version 2 licenses. + **/ + + +/** + * + * This class offers the possibility to calculate fractions. + * You can pass a fraction in different formats. Either as array, as double, as string or as an integer. + * + * Array/Object form + * [ 0 => <numerator>, 1 => <denominator> ] + * [ n => <numerator>, d => <denominator> ] + * + * Integer form + * - Single integer value + * + * Double form + * - Single double value + * + * String form + * 123.456 - a simple double + * 123/456 - a string fraction + * 123.'456' - a double with repeating decimal places + * 123.(456) - synonym + * 123.45'6' - a double with repeating last place + * 123.45(6) - synonym + * + * Example: + * + * let f = new Fraction("9.4'31'"); + * f.mul([-4, 3]).div(4.9); + * + */ + +(function(root) { + + "use strict"; + + // Set Identity function to downgrade BigInt to Number if needed + if (typeof BigInt === 'undefined') BigInt = function(n) { if (isNaN(n)) throw new Error(""); return n; }; + + const C_ONE = BigInt(1); + const C_ZERO = BigInt(0); + const C_TEN = BigInt(10); + const C_TWO = BigInt(2); + const C_FIVE = BigInt(5); + + // Maximum search depth for cyclic rational numbers. 2000 should be more than enough. + // Example: 1/7 = 0.(142857) has 6 repeating decimal places. + // If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits + const MAX_CYCLE_LEN = 2000; + + // Parsed data to avoid calling "new" all the time + const P = { + "s": C_ONE, + "n": C_ZERO, + "d": C_ONE + }; + + function assign(n, s) { + + try { + n = BigInt(n); + } catch (e) { + throw InvalidParameter(); + } + return n * s; + } + + // Creates a new Fraction internally without the need of the bulky constructor + function newFraction(n, d) { + + if (d === C_ZERO) { + throw DivisionByZero(); + } + + const f = Object.create(Fraction.prototype); + f["s"] = n < C_ZERO ? -C_ONE : C_ONE; + + n = n < C_ZERO ? -n : n; + + const a = gcd(n, d); + + f["n"] = n / a; + f["d"] = d / a; + return f; + } + + function factorize(num) { + + const factors = {}; + + let n = num; + let i = C_TWO; + let s = C_FIVE - C_ONE; + + while (s <= n) { + + while (n % i === C_ZERO) { + n/= i; + factors[i] = (factors[i] || C_ZERO) + C_ONE; + } + s+= C_ONE + C_TWO * i++; + } + + if (n !== num) { + if (n > 1) + factors[n] = (factors[n] || C_ZERO) + C_ONE; + } else { + factors[num] = (factors[num] || C_ZERO) + C_ONE; + } + return factors; + } + + const parse = function(p1, p2) { + + let n = C_ZERO, d = C_ONE, s = C_ONE; + + if (p1 === undefined || p1 === null) { + /* void */ + } else if (p2 !== undefined) { + n = BigInt(p1); + d = BigInt(p2); + s = n * d; + + if (n % C_ONE !== C_ZERO || d % C_ONE !== C_ZERO) { + throw NonIntegerParameter(); + } + + } else if (typeof p1 === "object") { + if ("d" in p1 && "n" in p1) { + n = BigInt(p1["n"]); + d = BigInt(p1["d"]); + if ("s" in p1) + n*= BigInt(p1["s"]); + } else if (0 in p1) { + n = BigInt(p1[0]); + if (1 in p1) + d = BigInt(p1[1]); + } else if (p1 instanceof BigInt) { + n = BigInt(p1); + } else { + throw InvalidParameter(); + } + s = n * d; + } else if (typeof p1 === "bigint") { + n = p1; + s = p1; + d = C_ONE; + } else if (typeof p1 === "number") { + + if (isNaN(p1)) { + throw InvalidParameter(); + } + + if (p1 < 0) { + s = -C_ONE; + p1 = -p1; + } + + if (p1 % 1 === 0) { + n = BigInt(p1); + } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow + + let z = 1; + + let A = 0, B = 1; + let C = 1, D = 1; + + let N = 10000000; + + if (p1 >= 1) { + z = 10 ** Math.floor(1 + Math.log10(p1)); + p1/= z; + } + + // Using Farey Sequences + + while (B <= N && D <= N) { + let M = (A + C) / (B + D); + + if (p1 === M) { + if (B + D <= N) { + n = A + C; + d = B + D; + } else if (D > B) { + n = C; + d = D; + } else { + n = A; + d = B; + } + break; + + } else { + + if (p1 > M) { + A+= C; + B+= D; + } else { + C+= A; + D+= B; + } + + if (B > N) { + n = C; + d = D; + } else { + n = A; + d = B; + } + } + } + n = BigInt(n) * BigInt(z); + d = BigInt(d); + + } + + } else if (typeof p1 === "string") { + + let ndx = 0; + + let v = C_ZERO, w = C_ZERO, x = C_ZERO, y = C_ONE, z = C_ONE; + + let match = p1.match(/\d+|./g); + + if (match === null) + throw InvalidParameter(); + + if (match[ndx] === '-') {// Check for minus sign at the beginning + s = -C_ONE; + ndx++; + } else if (match[ndx] === '+') {// Check for plus sign at the beginning + ndx++; + } + + if (match.length === ndx + 1) { // Check if it's just a simple number "1234" + w = assign(match[ndx++], s); + } else if (match[ndx + 1] === '.' || match[ndx] === '.') { // Check if it's a decimal number + + if (match[ndx] !== '.') { // Handle 0.5 and .5 + v = assign(match[ndx++], s); + } + ndx++; + + // Check for decimal places + if (ndx + 1 === match.length || match[ndx + 1] === '(' && match[ndx + 3] === ')' || match[ndx + 1] === "'" && match[ndx + 3] === "'") { + w = assign(match[ndx], s); + y = C_TEN ** BigInt(match[ndx].length); + ndx++; + } + + // Check for repeating places + if (match[ndx] === '(' && match[ndx + 2] === ')' || match[ndx] === "'" && match[ndx + 2] === "'") { + x = assign(match[ndx + 1], s); + z = C_TEN ** BigInt(match[ndx + 1].length) - C_ONE; + ndx+= 3; + } + + } else if (match[ndx + 1] === '/' || match[ndx + 1] === ':') { // Check for a simple fraction "123/456" or "123:456" + w = assign(match[ndx], s); + y = assign(match[ndx + 2], C_ONE); + ndx+= 3; + } else if (match[ndx + 3] === '/' && match[ndx + 1] === ' ') { // Check for a complex fraction "123 1/2" + v = assign(match[ndx], s); + w = assign(match[ndx + 2], s); + y = assign(match[ndx + 4], C_ONE); + ndx+= 5; + } + + if (match.length <= ndx) { // Check for more tokens on the stack + d = y * z; + s = /* void */ + n = x + d * v + z * w; + } else { + throw InvalidParameter(); + } + + } else { + throw InvalidParameter(); + } + + if (d === C_ZERO) { + throw DivisionByZero(); + } + + P["s"] = s < C_ZERO ? -C_ONE : C_ONE; + P["n"] = n < C_ZERO ? -n : n; + P["d"] = d < C_ZERO ? -d : d; + }; + + function modpow(b, e, m) { + + let r = C_ONE; + for (; e > C_ZERO; b = (b * b) % m, e >>= C_ONE) { + + if (e & C_ONE) { + r = (r * b) % m; + } + } + return r; + } + + function cycleLen(n, d) { + + for (; d % C_TWO === C_ZERO; + d/= C_TWO) { + } + + for (; d % C_FIVE === C_ZERO; + d/= C_FIVE) { + } + + if (d === C_ONE) // Catch non-cyclic numbers + return C_ZERO; + + // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem: + // 10^(d-1) % d == 1 + // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone, + // as we want to translate the numbers to strings. + + let rem = C_TEN % d; + let t = 1; + + for (; rem !== C_ONE; t++) { + rem = rem * C_TEN % d; + + if (t > MAX_CYCLE_LEN) + return C_ZERO; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1` + } + return BigInt(t); + } + + function cycleStart(n, d, len) { + + let rem1 = C_ONE; + let rem2 = modpow(C_TEN, len, d); + + for (let t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE) + // Solve 10^s == 10^(s+t) (mod d) + + if (rem1 === rem2) + return BigInt(t); + + rem1 = rem1 * C_TEN % d; + rem2 = rem2 * C_TEN % d; + } + return 0; + } + + function gcd(a, b) { + + if (!a) + return b; + if (!b) + return a; + + while (1) { + a%= b; + if (!a) + return b; + b%= a; + if (!b) + return a; + } + } + + /** + * Module constructor + * + * @constructor + * @param {number|Fraction=} a + * @param {number=} b + */ + function Fraction(a, b) { + + parse(a, b); + + if (this instanceof Fraction) { + a = gcd(P["d"], P["n"]); // Abuse a + this["s"] = P["s"]; + this["n"] = P["n"] / a; + this["d"] = P["d"] / a; + } else { + return newFraction(P['s'] * P['n'], P['d']); + } + } + + var DivisionByZero = function() {return new Error("Division by Zero");}; + var InvalidParameter = function() {return new Error("Invalid argument");}; + var NonIntegerParameter = function() {return new Error("Parameters must be integer");}; + + Fraction.prototype = { + + "s": C_ONE, + "n": C_ZERO, + "d": C_ONE, + + /** + * Calculates the absolute value + * + * Ex: new Fraction(-4).abs() => 4 + **/ + "abs": function() { + + return newFraction(this["n"], this["d"]); + }, + + /** + * Inverts the sign of the current fraction + * + * Ex: new Fraction(-4).neg() => 4 + **/ + "neg": function() { + + return newFraction(-this["s"] * this["n"], this["d"]); + }, + + /** + * Adds two rational numbers + * + * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30 + **/ + "add": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"], + this["d"] * P["d"] + ); + }, + + /** + * Subtracts two rational numbers + * + * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30 + **/ + "sub": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"], + this["d"] * P["d"] + ); + }, + + /** + * Multiplies two rational numbers + * + * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111 + **/ + "mul": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * P["s"] * this["n"] * P["n"], + this["d"] * P["d"] + ); + }, + + /** + * Divides two rational numbers + * + * Ex: new Fraction("-17.(345)").inverse().div(3) + **/ + "div": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * P["s"] * this["n"] * P["d"], + this["d"] * P["n"] + ); + }, + + /** + * Clones the actual object + * + * Ex: new Fraction("-17.(345)").clone() + **/ + "clone": function() { + return newFraction(this['s'] * this['n'], this['d']); + }, + + /** + * Calculates the modulo of two rational numbers - a more precise fmod + * + * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6) + **/ + "mod": function(a, b) { + + if (a === undefined) { + return newFraction(this["s"] * this["n"] % this["d"], C_ONE); + } + + parse(a, b); + if (0 === P["n"] && 0 === this["d"]) { + throw DivisionByZero(); + } + + /* + * First silly attempt, kinda slow + * + return that["sub"]({ + "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)), + "d": num["d"], + "s": this["s"] + });*/ + + /* + * New attempt: a1 / b1 = a2 / b2 * q + r + * => b2 * a1 = a2 * b1 * q + b1 * b2 * r + * => (b2 * a1 % a2 * b1) / (b1 * b2) + */ + return newFraction( + this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]), + P["d"] * this["d"] + ); + }, + + /** + * Calculates the fractional gcd of two rational numbers + * + * Ex: new Fraction(5,8).gcd(3,7) => 1/56 + */ + "gcd": function(a, b) { + + parse(a, b); + + // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d) + + return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]); + }, + + /** + * Calculates the fractional lcm of two rational numbers + * + * Ex: new Fraction(5,8).lcm(3,7) => 15 + */ + "lcm": function(a, b) { + + parse(a, b); + + // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d) + + if (P["n"] === C_ZERO && this["n"] === C_ZERO) { + return newFraction(C_ZERO, C_ONE); + } + return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"])); + }, + + /** + * Gets the inverse of the fraction, means numerator and denominator are exchanged + * + * Ex: new Fraction([-3, 4]).inverse() => -4 / 3 + **/ + "inverse": function() { + return newFraction(this["s"] * this["d"], this["n"]); + }, + + /** + * Calculates the fraction to some integer exponent + * + * Ex: new Fraction(-1,2).pow(-3) => -8 + */ + "pow": function(a, b) { + + parse(a, b); + + // Trivial case when exp is an integer + + if (P['d'] === C_ONE) { + + if (P['s'] < C_ZERO) { + return newFraction((this['s'] * this["d"]) ** P['n'], this["n"] ** P['n']); + } else { + return newFraction((this['s'] * this["n"]) ** P['n'], this["d"] ** P['n']); + } + } + + // Negative roots become complex + // (-a/b)^(c/d) = x + // <=> (-1)^(c/d) * (a/b)^(c/d) = x + // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x + // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x # DeMoivre's formula + // From which follows that only for c=0 the root is non-complex + if (this['s'] < C_ZERO) return null; + + // Now prime factor n and d + let N = factorize(this['n']); + let D = factorize(this['d']); + + // Exponentiate and take root for n and d individually + let n = C_ONE; + let d = C_ONE; + for (let k in N) { + if (k === '1') continue; + if (k === '0') { + n = C_ZERO; + break; + } + N[k]*= P['n']; + + if (N[k] % P['d'] === C_ZERO) { + N[k]/= P['d']; + } else return null; + n*= BigInt(k) ** N[k]; + } + + for (let k in D) { + if (k === '1') continue; + D[k]*= P['n']; + + if (D[k] % P['d'] === C_ZERO) { + D[k]/= P['d']; + } else return null; + d*= BigInt(k) ** D[k]; + } + + if (P['s'] < C_ZERO) { + return newFraction(d, n); + } + return newFraction(n, d); + }, + + /** + * Check if two rational numbers are the same + * + * Ex: new Fraction(19.6).equals([98, 5]); + **/ + "equals": function(a, b) { + + parse(a, b); + return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0 + }, + + /** + * Check if two rational numbers are the same + * + * Ex: new Fraction(19.6).equals([98, 5]); + **/ + "compare": function(a, b) { + + parse(a, b); + let t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]); + + return (C_ZERO < t) - (t < C_ZERO); + }, + + /** + * Calculates the ceil of a rational number + * + * Ex: new Fraction('4.(3)').ceil() => (5 / 1) + **/ + "ceil": function(places) { + + places = C_TEN ** BigInt(places || 0); + + return newFraction(this["s"] * places * this["n"] / this["d"] + + (places * this["n"] % this["d"] > C_ZERO && this["s"] >= C_ZERO ? C_ONE : C_ZERO), + places); + }, + + /** + * Calculates the floor of a rational number + * + * Ex: new Fraction('4.(3)').floor() => (4 / 1) + **/ + "floor": function(places) { + + places = C_TEN ** BigInt(places || 0); + + return newFraction(this["s"] * places * this["n"] / this["d"] - + (places * this["n"] % this["d"] > C_ZERO && this["s"] < C_ZERO ? C_ONE : C_ZERO), + places); + }, + + /** + * Rounds a rational numbers + * + * Ex: new Fraction('4.(3)').round() => (4 / 1) + **/ + "round": function(places) { + + places = C_TEN ** BigInt(places || 0); + + /* Derivation: + + s >= 0: + round(n / d) = trunc(n / d) + (n % d) / d >= 0.5 ? 1 : 0 + = trunc(n / d) + 2(n % d) >= d ? 1 : 0 + s < 0: + round(n / d) =-trunc(n / d) - (n % d) / d > 0.5 ? 1 : 0 + =-trunc(n / d) - 2(n % d) > d ? 1 : 0 + + =>: + + round(s * n / d) = s * trunc(n / d) + s * (C + 2(n % d) > d ? 1 : 0) + where C = s >= 0 ? 1 : 0, to fix the >= for the positve case. + */ + + return newFraction(this["s"] * places * this["n"] / this["d"] + + this["s"] * ((this["s"] >= C_ZERO ? C_ONE : C_ZERO) + C_TWO * (places * this["n"] % this["d"]) > this["d"] ? C_ONE : C_ZERO), + places); + }, + + /** + * Check if two rational numbers are divisible + * + * Ex: new Fraction(19.6).divisible(1.5); + */ + "divisible": function(a, b) { + + parse(a, b); + return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"]))); + }, + + /** + * Returns a decimal representation of the fraction + * + * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183 + **/ + 'valueOf': function() { + // Best we can do so far + return Number(this["s"] * this["n"]) / Number(this["d"]); + }, + + /** + * Creates a string representation of a fraction with all digits + * + * Ex: new Fraction("100.'91823'").toString() => "100.(91823)" + **/ + 'toString': function(dec) { + + let N = this["n"]; + let D = this["d"]; + + function trunc(x) { + return typeof x === 'bigint' ? x : Math.floor(x); + } + + dec = dec || 15; // 15 = decimal places when no repetition + + let cycLen = cycleLen(N, D); // Cycle length + let cycOff = cycleStart(N, D, cycLen); // Cycle start + + let str = this['s'] < C_ZERO ? "-" : ""; + + // Append integer part + str+= trunc(N / D); + + N%= D; + N*= C_TEN; + + if (N) + str+= "."; + + if (cycLen) { + + for (let i = cycOff; i--;) { + str+= trunc(N / D); + N%= D; + N*= C_TEN; + } + str+= "("; + for (let i = cycLen; i--;) { + str+= trunc(N / D); + N%= D; + N*= C_TEN; + } + str+= ")"; + } else { + for (let i = dec; N && i--;) { + str+= trunc(N / D); + N%= D; + N*= C_TEN; + } + } + return str; + }, + + /** + * Returns a string-fraction representation of a Fraction object + * + * Ex: new Fraction("1.'3'").toFraction() => "4 1/3" + **/ + 'toFraction': function(excludeWhole) { + + let n = this["n"]; + let d = this["d"]; + let str = this['s'] < C_ZERO ? "-" : ""; + + if (d === C_ONE) { + str+= n; + } else { + let whole = n / d; + if (excludeWhole && whole > C_ZERO) { + str+= whole; + str+= " "; + n%= d; + } + + str+= n; + str+= '/'; + str+= d; + } + return str; + }, + + /** + * Returns a latex representation of a Fraction object + * + * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}" + **/ + 'toLatex': function(excludeWhole) { + + let n = this["n"]; + let d = this["d"]; + let str = this['s'] < C_ZERO ? "-" : ""; + + if (d === C_ONE) { + str+= n; + } else { + let whole = n / d; + if (excludeWhole && whole > C_ZERO) { + str+= whole; + n%= d; + } + + str+= "\\frac{"; + str+= n; + str+= '}{'; + str+= d; + str+= '}'; + } + return str; + }, + + /** + * Returns an array of continued fraction elements + * + * Ex: new Fraction("7/8").toContinued() => [0,1,7] + */ + 'toContinued': function() { + + let a = this['n']; + let b = this['d']; + let res = []; + + do { + res.push(a / b); + let t = a % b; + a = b; + b = t; + } while (a !== C_ONE); + + return res; + }, + + "simplify": function(eps) { + + eps = eps || 0.001; + + const thisABS = this['abs'](); + const cont = thisABS['toContinued'](); + + for (let i = 1; i < cont.length; i++) { + + let s = newFraction(cont[i - 1], C_ONE); + for (let k = i - 2; k >= 0; k--) { + s = s['inverse']()['add'](cont[k]); + } + + if (Math.abs(s['sub'](thisABS).valueOf()) < eps) { + return s['mul'](this['s']); + } + } + return this; + } + }; + + if (typeof define === "function" && define["amd"]) { + define([], function() { + return Fraction; + }); + } else if (typeof exports === "object") { + Object.defineProperty(exports, "__esModule", { 'value': true }); + Fraction['default'] = Fraction; + Fraction['Fraction'] = Fraction; + module['exports'] = Fraction; + } else { + root['Fraction'] = Fraction; + } + +})(this); |