diff options
Diffstat (limited to 'node_modules/fraction.js')
| -rw-r--r-- | node_modules/fraction.js/LICENSE | 21 | ||||
| -rw-r--r-- | node_modules/fraction.js/README.md | 466 | ||||
| -rw-r--r-- | node_modules/fraction.js/bigfraction.js | 899 | ||||
| -rw-r--r-- | node_modules/fraction.js/fraction.cjs | 904 | ||||
| -rw-r--r-- | node_modules/fraction.js/fraction.d.ts | 60 | ||||
| -rw-r--r-- | node_modules/fraction.js/fraction.js | 891 | ||||
| -rw-r--r-- | node_modules/fraction.js/fraction.min.js | 18 | ||||
| -rw-r--r-- | node_modules/fraction.js/package.json | 55 |
8 files changed, 3314 insertions, 0 deletions
diff --git a/node_modules/fraction.js/LICENSE b/node_modules/fraction.js/LICENSE new file mode 100644 index 0000000..6dd5328 --- /dev/null +++ b/node_modules/fraction.js/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2023 Robert Eisele + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/node_modules/fraction.js/README.md b/node_modules/fraction.js/README.md new file mode 100644 index 0000000..7d3f31a --- /dev/null +++ b/node_modules/fraction.js/README.md @@ -0,0 +1,466 @@ +# Fraction.js - ℚ in JavaScript + +[](https://npmjs.org/package/fraction.js "View this project on npm") +[](http://opensource.org/licenses/MIT) + + +Tired of inprecise numbers represented by doubles, which have to store rational and irrational numbers like PI or sqrt(2) the same way? Obviously the following problem is preventable: + +```javascript +1 / 98 * 98 // = 0.9999999999999999 +``` + +If you need more precision or just want a fraction as a result, just include *Fraction.js*: + +```javascript +var Fraction = require('fraction.js'); +// or +import Fraction from 'fraction.js'; +``` + +and give it a trial: + +```javascript +Fraction(1).div(98).mul(98) // = 1 +``` + +Internally, numbers are represented as *numerator / denominator*, which adds just a little overhead. However, the library is written with performance and accuracy in mind, which makes it the perfect basis for [Polynomial.js](https://github.com/infusion/Polynomial.js) and [Math.js](https://github.com/josdejong/mathjs). + +Convert decimal to fraction +=== +The simplest job for fraction.js is to get a fraction out of a decimal: +```javascript +var x = new Fraction(1.88); +var res = x.toFraction(true); // String "1 22/25" +``` + +Examples / Motivation +=== +A simple example might be + +```javascript +var f = new Fraction("9.4'31'"); // 9.4313131313131... +f.mul([-4, 3]).mod("4.'8'"); // 4.88888888888888... +``` +The result is + +```javascript +console.log(f.toFraction()); // -4154 / 1485 +``` +You could of course also access the sign (s), numerator (n) and denominator (d) on your own: +```javascript +f.s * f.n / f.d = -1 * 4154 / 1485 = -2.797306... +``` + +If you would try to calculate it yourself, you would come up with something like: + +```javascript +(9.4313131 * (-4 / 3)) % 4.888888 = -2.797308133... +``` + +Quite okay, but yea - not as accurate as it could be. + + +Laplace Probability +=== +Simple example. What's the probability of throwing a 3, and 1 or 4, and 2 or 4 or 6 with a fair dice? + +P({3}): +```javascript +var p = new Fraction([3].length, 6).toString(); // 0.1(6) +``` + +P({1, 4}): +```javascript +var p = new Fraction([1, 4].length, 6).toString(); // 0.(3) +``` + +P({2, 4, 6}): +```javascript +var p = new Fraction([2, 4, 6].length, 6).toString(); // 0.5 +``` + +Convert degrees/minutes/seconds to precise rational representation: +=== + +57+45/60+17/3600 +```javascript +var deg = 57; // 57° +var min = 45; // 45 Minutes +var sec = 17; // 17 Seconds + +new Fraction(deg).add(min, 60).add(sec, 3600).toString() // -> 57.7547(2) +``` + + +Rational approximation of irrational numbers +=== + +Now it's getting messy ;d To approximate a number like *sqrt(5) - 2* with a numerator and denominator, you can reformat the equation as follows: *pow(n / d + 2, 2) = 5*. + +Then the following algorithm will generate the rational number besides the binary representation. + +```javascript +var x = "/", s = ""; + +var a = new Fraction(0), + b = new Fraction(1); +for (var n = 0; n <= 10; n++) { + + var c = a.add(b).div(2); + + console.log(n + "\t" + a + "\t" + b + "\t" + c + "\t" + x); + + if (c.add(2).pow(2) < 5) { + a = c; + x = "1"; + } else { + b = c; + x = "0"; + } + s+= x; +} +console.log(s) +``` + +The result is + +``` +n a[n] b[n] c[n] x[n] +0 0/1 1/1 1/2 / +1 0/1 1/2 1/4 0 +2 0/1 1/4 1/8 0 +3 1/8 1/4 3/16 1 +4 3/16 1/4 7/32 1 +5 7/32 1/4 15/64 1 +6 15/64 1/4 31/128 1 +7 15/64 31/128 61/256 0 +8 15/64 61/256 121/512 0 +9 15/64 121/512 241/1024 0 +10 241/1024 121/512 483/2048 1 +``` +Thus the approximation after 11 iterations of the bisection method is *483 / 2048* and the binary representation is 0.00111100011 (see [WolframAlpha](http://www.wolframalpha.com/input/?i=sqrt%285%29-2+binary)) + + +I published another example on how to approximate PI with fraction.js on my [blog](http://www.xarg.org/2014/03/precise-calculations-in-javascript/) (Still not the best idea to approximate irrational numbers, but it illustrates the capabilities of Fraction.js perfectly). + + +Get the exact fractional part of a number +--- +```javascript +var f = new Fraction("-6.(3416)"); +console.log("" + f.mod(1).abs()); // 0.(3416) +``` + +Mathematical correct modulo +--- +The behaviour on negative congruences is different to most modulo implementations in computer science. Even the *mod()* function of Fraction.js behaves in the typical way. To solve the problem of having the mathematical correct modulo with Fraction.js you could come up with this: + +```javascript +var a = -1; +var b = 10.99; + +console.log(new Fraction(a) + .mod(b)); // Not correct, usual Modulo + +console.log(new Fraction(a) + .mod(b).add(b).mod(b)); // Correct! Mathematical Modulo +``` + +fmod() impreciseness circumvented +--- +It turns out that Fraction.js outperforms almost any fmod() implementation, including JavaScript itself, [php.js](http://phpjs.org/functions/fmod/), C++, Python, Java and even Wolframalpha due to the fact that numbers like 0.05, 0.1, ... are infinite decimal in base 2. + +The equation *fmod(4.55, 0.05)* gives *0.04999999999999957*, wolframalpha says *1/20*. The correct answer should be **zero**, as 0.05 divides 4.55 without any remainder. + + +Parser +=== + +Any function (see below) as well as the constructor of the *Fraction* class parses its input and reduce it to the smallest term. + +You can pass either Arrays, Objects, Integers, Doubles or Strings. + +Arrays / Objects +--- +```javascript +new Fraction(numerator, denominator); +new Fraction([numerator, denominator]); +new Fraction({n: numerator, d: denominator}); +``` + +Integers +--- +```javascript +new Fraction(123); +``` + +Doubles +--- +```javascript +new Fraction(55.4); +``` + +**Note:** If you pass a double as it is, Fraction.js will perform a number analysis based on Farey Sequences. If you concern performance, cache Fraction.js objects and pass arrays/objects. + +The method is really precise, but too large exact numbers, like 1234567.9991829 will result in a wrong approximation. If you want to keep the number as it is, convert it to a string, as the string parser will not perform any further observations. If you have problems with the approximation, in the file `examples/approx.js` is a different approximation algorithm, which might work better in some more specific use-cases. + + +Strings +--- +```javascript +new Fraction("123.45"); +new Fraction("123/45"); // A rational number represented as two decimals, separated by a slash +new Fraction("123:45"); // A rational number represented as two decimals, separated by a colon +new Fraction("4 123/45"); // A rational number represented as a whole number and a fraction +new Fraction("123.'456'"); // Note the quotes, see below! +new Fraction("123.(456)"); // Note the brackets, see below! +new Fraction("123.45'6'"); // Note the quotes, see below! +new Fraction("123.45(6)"); // Note the brackets, see below! +``` + +Two arguments +--- +```javascript +new Fraction(3, 2); // 3/2 = 1.5 +``` + +Repeating decimal places +--- +*Fraction.js* can easily handle repeating decimal places. For example *1/3* is *0.3333...*. There is only one repeating digit. As you can see in the examples above, you can pass a number like *1/3* as "0.'3'" or "0.(3)", which are synonym. There are no tests to parse something like 0.166666666 to 1/6! If you really want to handle this number, wrap around brackets on your own with the function below for example: 0.1(66666666) + +Assume you want to divide 123.32 / 33.6(567). [WolframAlpha](http://www.wolframalpha.com/input/?i=123.32+%2F+%2812453%2F370%29) states that you'll get a period of 1776 digits. *Fraction.js* comes to the same result. Give it a try: + +```javascript +var f = new Fraction("123.32"); +console.log("Bam: " + f.div("33.6(567)")); +``` + +To automatically make a number like "0.123123123" to something more Fraction.js friendly like "0.(123)", I hacked this little brute force algorithm in a 10 minutes. Improvements are welcome... + +```javascript +function formatDecimal(str) { + + var comma, pre, offset, pad, times, repeat; + + if (-1 === (comma = str.indexOf("."))) + return str; + + pre = str.substr(0, comma + 1); + str = str.substr(comma + 1); + + for (var i = 0; i < str.length; i++) { + + offset = str.substr(0, i); + + for (var j = 0; j < 5; j++) { + + pad = str.substr(i, j + 1); + + times = Math.ceil((str.length - offset.length) / pad.length); + + repeat = new Array(times + 1).join(pad); // Silly String.repeat hack + + if (0 === (offset + repeat).indexOf(str)) { + return pre + offset + "(" + pad + ")"; + } + } + } + return null; +} + +var f, x = formatDecimal("13.0123123123"); // = 13.0(123) +if (x !== null) { + f = new Fraction(x); +} +``` + +Attributes +=== + +The Fraction object allows direct access to the numerator, denominator and sign attributes. It is ensured that only the sign-attribute holds sign information so that a sign comparison is only necessary against this attribute. + +```javascript +var f = new Fraction('-1/2'); +console.log(f.n); // Numerator: 1 +console.log(f.d); // Denominator: 2 +console.log(f.s); // Sign: -1 +``` + + +Functions +=== + +Fraction abs() +--- +Returns the actual number without any sign information + +Fraction neg() +--- +Returns the actual number with flipped sign in order to get the additive inverse + +Fraction add(n) +--- +Returns the sum of the actual number and the parameter n + +Fraction sub(n) +--- +Returns the difference of the actual number and the parameter n + +Fraction mul(n) +--- +Returns the product of the actual number and the parameter n + +Fraction div(n) +--- +Returns the quotient of the actual number and the parameter n + +Fraction pow(exp) +--- +Returns the power of the actual number, raised to an possible rational exponent. If the result becomes non-rational the function returns `null`. + +Fraction mod(n) +--- +Returns the modulus (rest of the division) of the actual object and n (this % n). It's a much more precise [fmod()](#fmod-impreciseness-circumvented) if you like. Please note that *mod()* is just like the modulo operator of most programming languages. If you want a mathematical correct modulo, see [here](#mathematical-correct-modulo). + +Fraction mod() +--- +Returns the modulus (rest of the division) of the actual object (numerator mod denominator) + +Fraction gcd(n) +--- +Returns the fractional greatest common divisor + +Fraction lcm(n) +--- +Returns the fractional least common multiple + +Fraction ceil([places=0-16]) +--- +Returns the ceiling of a rational number with Math.ceil + +Fraction floor([places=0-16]) +--- +Returns the floor of a rational number with Math.floor + +Fraction round([places=0-16]) +--- +Returns the rational number rounded with Math.round + +Fraction roundTo(multiple) +--- +Rounds a fraction to the closest multiple of another fraction. + +Fraction inverse() +--- +Returns the multiplicative inverse of the actual number (n / d becomes d / n) in order to get the reciprocal + +Fraction simplify([eps=0.001]) +--- +Simplifies the rational number under a certain error threshold. Ex. `0.333` will be `1/3` with `eps=0.001` + +boolean equals(n) +--- +Check if two numbers are equal + +int compare(n) +--- +Compare two numbers. +``` +result < 0: n is greater than actual number +result > 0: n is smaller than actual number +result = 0: n is equal to the actual number +``` + +boolean divisible(n) +--- +Check if two numbers are divisible (n divides this) + +double valueOf() +--- +Returns a decimal representation of the fraction + +String toString([decimalPlaces=15]) +--- +Generates an exact string representation of the actual object. For repeated decimal places all digits are collected within brackets, like `1/3 = "0.(3)"`. For all other numbers, up to `decimalPlaces` significant digits are collected - which includes trailing zeros if the number is getting truncated. However, `1/2 = "0.5"` without trailing zeros of course. + +**Note:** As `valueOf()` and `toString()` are provided, `toString()` is only called implicitly in a real string context. Using the plus-operator like `"123" + new Fraction` will call valueOf(), because JavaScript tries to combine two primitives first and concatenates them later, as string will be the more dominant type. `alert(new Fraction)` or `String(new Fraction)` on the other hand will do what you expect. If you really want to have control, you should call `toString()` or `valueOf()` explicitly! + +String toLatex(excludeWhole=false) +--- +Generates an exact LaTeX representation of the actual object. You can see a [live demo](http://www.xarg.org/2014/03/precise-calculations-in-javascript/) on my blog. + +The optional boolean parameter indicates if you want to exclude the whole part. "1 1/3" instead of "4/3" + +String toFraction(excludeWhole=false) +--- +Gets a string representation of the fraction + +The optional boolean parameter indicates if you want to exclude the whole part. "1 1/3" instead of "4/3" + +Array toContinued() +--- +Gets an array of the fraction represented as a continued fraction. The first element always contains the whole part. + +```javascript +var f = new Fraction('88/33'); +var c = f.toContinued(); // [2, 1, 2] +``` + +Fraction clone() +--- +Creates a copy of the actual Fraction object + + +Exceptions +=== +If a really hard error occurs (parsing error, division by zero), *fraction.js* throws exceptions! Please make sure you handle them correctly. + + + +Installation +=== +Installing fraction.js is as easy as cloning this repo or use the following command: + +``` +npm install fraction.js +``` + +Using Fraction.js with the browser +=== +```html +<script src="fraction.js"></script> +<script> + console.log(Fraction("123/456")); +</script> +``` + +Using Fraction.js with TypeScript +=== +```js +import Fraction from "fraction.js"; +console.log(Fraction("123/456")); +``` + +Coding Style +=== +As every library I publish, fraction.js is also built to be as small as possible after compressing it with Google Closure Compiler in advanced mode. Thus the coding style orientates a little on maxing-out the compression rate. Please make sure you keep this style if you plan to extend the library. + + +Precision +=== +Fraction.js tries to circumvent floating point errors, by having an internal representation of numerator and denominator. As it relies on JavaScript, there is also a limit. The biggest number representable is `Number.MAX_SAFE_INTEGER / 1` and the smallest is `-1 / Number.MAX_SAFE_INTEGER`, with `Number.MAX_SAFE_INTEGER=9007199254740991`. If this is not enough, there is `bigfraction.js` shipped experimentally, which relies on `BigInt` and should become the new Fraction.js eventually. + +Testing +=== +If you plan to enhance the library, make sure you add test cases and all the previous tests are passing. You can test the library with + +``` +npm test +``` + + +Copyright and licensing +=== +Copyright (c) 2023, [Robert Eisele](https://raw.org/) +Licensed under the MIT license. diff --git a/node_modules/fraction.js/bigfraction.js b/node_modules/fraction.js/bigfraction.js new file mode 100644 index 0000000..038ca05 --- /dev/null +++ b/node_modules/fraction.js/bigfraction.js @@ -0,0 +1,899 @@ +/** + * @license Fraction.js v4.2.1 20/08/2023 + * https://www.xarg.org/2014/03/rational-numbers-in-javascript/ + * + * Copyright (c) 2023, Robert Eisele (robert@raw.org) + * Dual licensed under the MIT or GPL Version 2 licenses. + **/ + + +/** + * + * This class offers the possibility to calculate fractions. + * You can pass a fraction in different formats. Either as array, as double, as string or as an integer. + * + * Array/Object form + * [ 0 => <numerator>, 1 => <denominator> ] + * [ n => <numerator>, d => <denominator> ] + * + * Integer form + * - Single integer value + * + * Double form + * - Single double value + * + * String form + * 123.456 - a simple double + * 123/456 - a string fraction + * 123.'456' - a double with repeating decimal places + * 123.(456) - synonym + * 123.45'6' - a double with repeating last place + * 123.45(6) - synonym + * + * Example: + * + * let f = new Fraction("9.4'31'"); + * f.mul([-4, 3]).div(4.9); + * + */ + +(function(root) { + + "use strict"; + + // Set Identity function to downgrade BigInt to Number if needed + if (typeof BigInt === 'undefined') BigInt = function(n) { if (isNaN(n)) throw new Error(""); return n; }; + + const C_ONE = BigInt(1); + const C_ZERO = BigInt(0); + const C_TEN = BigInt(10); + const C_TWO = BigInt(2); + const C_FIVE = BigInt(5); + + // Maximum search depth for cyclic rational numbers. 2000 should be more than enough. + // Example: 1/7 = 0.(142857) has 6 repeating decimal places. + // If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits + const MAX_CYCLE_LEN = 2000; + + // Parsed data to avoid calling "new" all the time + const P = { + "s": C_ONE, + "n": C_ZERO, + "d": C_ONE + }; + + function assign(n, s) { + + try { + n = BigInt(n); + } catch (e) { + throw InvalidParameter(); + } + return n * s; + } + + // Creates a new Fraction internally without the need of the bulky constructor + function newFraction(n, d) { + + if (d === C_ZERO) { + throw DivisionByZero(); + } + + const f = Object.create(Fraction.prototype); + f["s"] = n < C_ZERO ? -C_ONE : C_ONE; + + n = n < C_ZERO ? -n : n; + + const a = gcd(n, d); + + f["n"] = n / a; + f["d"] = d / a; + return f; + } + + function factorize(num) { + + const factors = {}; + + let n = num; + let i = C_TWO; + let s = C_FIVE - C_ONE; + + while (s <= n) { + + while (n % i === C_ZERO) { + n/= i; + factors[i] = (factors[i] || C_ZERO) + C_ONE; + } + s+= C_ONE + C_TWO * i++; + } + + if (n !== num) { + if (n > 1) + factors[n] = (factors[n] || C_ZERO) + C_ONE; + } else { + factors[num] = (factors[num] || C_ZERO) + C_ONE; + } + return factors; + } + + const parse = function(p1, p2) { + + let n = C_ZERO, d = C_ONE, s = C_ONE; + + if (p1 === undefined || p1 === null) { + /* void */ + } else if (p2 !== undefined) { + n = BigInt(p1); + d = BigInt(p2); + s = n * d; + + if (n % C_ONE !== C_ZERO || d % C_ONE !== C_ZERO) { + throw NonIntegerParameter(); + } + + } else if (typeof p1 === "object") { + if ("d" in p1 && "n" in p1) { + n = BigInt(p1["n"]); + d = BigInt(p1["d"]); + if ("s" in p1) + n*= BigInt(p1["s"]); + } else if (0 in p1) { + n = BigInt(p1[0]); + if (1 in p1) + d = BigInt(p1[1]); + } else if (p1 instanceof BigInt) { + n = BigInt(p1); + } else { + throw InvalidParameter(); + } + s = n * d; + } else if (typeof p1 === "bigint") { + n = p1; + s = p1; + d = C_ONE; + } else if (typeof p1 === "number") { + + if (isNaN(p1)) { + throw InvalidParameter(); + } + + if (p1 < 0) { + s = -C_ONE; + p1 = -p1; + } + + if (p1 % 1 === 0) { + n = BigInt(p1); + } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow + + let z = 1; + + let A = 0, B = 1; + let C = 1, D = 1; + + let N = 10000000; + + if (p1 >= 1) { + z = 10 ** Math.floor(1 + Math.log10(p1)); + p1/= z; + } + + // Using Farey Sequences + + while (B <= N && D <= N) { + let M = (A + C) / (B + D); + + if (p1 === M) { + if (B + D <= N) { + n = A + C; + d = B + D; + } else if (D > B) { + n = C; + d = D; + } else { + n = A; + d = B; + } + break; + + } else { + + if (p1 > M) { + A+= C; + B+= D; + } else { + C+= A; + D+= B; + } + + if (B > N) { + n = C; + d = D; + } else { + n = A; + d = B; + } + } + } + n = BigInt(n) * BigInt(z); + d = BigInt(d); + + } + + } else if (typeof p1 === "string") { + + let ndx = 0; + + let v = C_ZERO, w = C_ZERO, x = C_ZERO, y = C_ONE, z = C_ONE; + + let match = p1.match(/\d+|./g); + + if (match === null) + throw InvalidParameter(); + + if (match[ndx] === '-') {// Check for minus sign at the beginning + s = -C_ONE; + ndx++; + } else if (match[ndx] === '+') {// Check for plus sign at the beginning + ndx++; + } + + if (match.length === ndx + 1) { // Check if it's just a simple number "1234" + w = assign(match[ndx++], s); + } else if (match[ndx + 1] === '.' || match[ndx] === '.') { // Check if it's a decimal number + + if (match[ndx] !== '.') { // Handle 0.5 and .5 + v = assign(match[ndx++], s); + } + ndx++; + + // Check for decimal places + if (ndx + 1 === match.length || match[ndx + 1] === '(' && match[ndx + 3] === ')' || match[ndx + 1] === "'" && match[ndx + 3] === "'") { + w = assign(match[ndx], s); + y = C_TEN ** BigInt(match[ndx].length); + ndx++; + } + + // Check for repeating places + if (match[ndx] === '(' && match[ndx + 2] === ')' || match[ndx] === "'" && match[ndx + 2] === "'") { + x = assign(match[ndx + 1], s); + z = C_TEN ** BigInt(match[ndx + 1].length) - C_ONE; + ndx+= 3; + } + + } else if (match[ndx + 1] === '/' || match[ndx + 1] === ':') { // Check for a simple fraction "123/456" or "123:456" + w = assign(match[ndx], s); + y = assign(match[ndx + 2], C_ONE); + ndx+= 3; + } else if (match[ndx + 3] === '/' && match[ndx + 1] === ' ') { // Check for a complex fraction "123 1/2" + v = assign(match[ndx], s); + w = assign(match[ndx + 2], s); + y = assign(match[ndx + 4], C_ONE); + ndx+= 5; + } + + if (match.length <= ndx) { // Check for more tokens on the stack + d = y * z; + s = /* void */ + n = x + d * v + z * w; + } else { + throw InvalidParameter(); + } + + } else { + throw InvalidParameter(); + } + + if (d === C_ZERO) { + throw DivisionByZero(); + } + + P["s"] = s < C_ZERO ? -C_ONE : C_ONE; + P["n"] = n < C_ZERO ? -n : n; + P["d"] = d < C_ZERO ? -d : d; + }; + + function modpow(b, e, m) { + + let r = C_ONE; + for (; e > C_ZERO; b = (b * b) % m, e >>= C_ONE) { + + if (e & C_ONE) { + r = (r * b) % m; + } + } + return r; + } + + function cycleLen(n, d) { + + for (; d % C_TWO === C_ZERO; + d/= C_TWO) { + } + + for (; d % C_FIVE === C_ZERO; + d/= C_FIVE) { + } + + if (d === C_ONE) // Catch non-cyclic numbers + return C_ZERO; + + // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem: + // 10^(d-1) % d == 1 + // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone, + // as we want to translate the numbers to strings. + + let rem = C_TEN % d; + let t = 1; + + for (; rem !== C_ONE; t++) { + rem = rem * C_TEN % d; + + if (t > MAX_CYCLE_LEN) + return C_ZERO; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1` + } + return BigInt(t); + } + + function cycleStart(n, d, len) { + + let rem1 = C_ONE; + let rem2 = modpow(C_TEN, len, d); + + for (let t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE) + // Solve 10^s == 10^(s+t) (mod d) + + if (rem1 === rem2) + return BigInt(t); + + rem1 = rem1 * C_TEN % d; + rem2 = rem2 * C_TEN % d; + } + return 0; + } + + function gcd(a, b) { + + if (!a) + return b; + if (!b) + return a; + + while (1) { + a%= b; + if (!a) + return b; + b%= a; + if (!b) + return a; + } + } + + /** + * Module constructor + * + * @constructor + * @param {number|Fraction=} a + * @param {number=} b + */ + function Fraction(a, b) { + + parse(a, b); + + if (this instanceof Fraction) { + a = gcd(P["d"], P["n"]); // Abuse a + this["s"] = P["s"]; + this["n"] = P["n"] / a; + this["d"] = P["d"] / a; + } else { + return newFraction(P['s'] * P['n'], P['d']); + } + } + + var DivisionByZero = function() {return new Error("Division by Zero");}; + var InvalidParameter = function() {return new Error("Invalid argument");}; + var NonIntegerParameter = function() {return new Error("Parameters must be integer");}; + + Fraction.prototype = { + + "s": C_ONE, + "n": C_ZERO, + "d": C_ONE, + + /** + * Calculates the absolute value + * + * Ex: new Fraction(-4).abs() => 4 + **/ + "abs": function() { + + return newFraction(this["n"], this["d"]); + }, + + /** + * Inverts the sign of the current fraction + * + * Ex: new Fraction(-4).neg() => 4 + **/ + "neg": function() { + + return newFraction(-this["s"] * this["n"], this["d"]); + }, + + /** + * Adds two rational numbers + * + * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30 + **/ + "add": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"], + this["d"] * P["d"] + ); + }, + + /** + * Subtracts two rational numbers + * + * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30 + **/ + "sub": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"], + this["d"] * P["d"] + ); + }, + + /** + * Multiplies two rational numbers + * + * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111 + **/ + "mul": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * P["s"] * this["n"] * P["n"], + this["d"] * P["d"] + ); + }, + + /** + * Divides two rational numbers + * + * Ex: new Fraction("-17.(345)").inverse().div(3) + **/ + "div": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * P["s"] * this["n"] * P["d"], + this["d"] * P["n"] + ); + }, + + /** + * Clones the actual object + * + * Ex: new Fraction("-17.(345)").clone() + **/ + "clone": function() { + return newFraction(this['s'] * this['n'], this['d']); + }, + + /** + * Calculates the modulo of two rational numbers - a more precise fmod + * + * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6) + **/ + "mod": function(a, b) { + + if (a === undefined) { + return newFraction(this["s"] * this["n"] % this["d"], C_ONE); + } + + parse(a, b); + if (0 === P["n"] && 0 === this["d"]) { + throw DivisionByZero(); + } + + /* + * First silly attempt, kinda slow + * + return that["sub"]({ + "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)), + "d": num["d"], + "s": this["s"] + });*/ + + /* + * New attempt: a1 / b1 = a2 / b2 * q + r + * => b2 * a1 = a2 * b1 * q + b1 * b2 * r + * => (b2 * a1 % a2 * b1) / (b1 * b2) + */ + return newFraction( + this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]), + P["d"] * this["d"] + ); + }, + + /** + * Calculates the fractional gcd of two rational numbers + * + * Ex: new Fraction(5,8).gcd(3,7) => 1/56 + */ + "gcd": function(a, b) { + + parse(a, b); + + // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d) + + return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]); + }, + + /** + * Calculates the fractional lcm of two rational numbers + * + * Ex: new Fraction(5,8).lcm(3,7) => 15 + */ + "lcm": function(a, b) { + + parse(a, b); + + // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d) + + if (P["n"] === C_ZERO && this["n"] === C_ZERO) { + return newFraction(C_ZERO, C_ONE); + } + return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"])); + }, + + /** + * Gets the inverse of the fraction, means numerator and denominator are exchanged + * + * Ex: new Fraction([-3, 4]).inverse() => -4 / 3 + **/ + "inverse": function() { + return newFraction(this["s"] * this["d"], this["n"]); + }, + + /** + * Calculates the fraction to some integer exponent + * + * Ex: new Fraction(-1,2).pow(-3) => -8 + */ + "pow": function(a, b) { + + parse(a, b); + + // Trivial case when exp is an integer + + if (P['d'] === C_ONE) { + + if (P['s'] < C_ZERO) { + return newFraction((this['s'] * this["d"]) ** P['n'], this["n"] ** P['n']); + } else { + return newFraction((this['s'] * this["n"]) ** P['n'], this["d"] ** P['n']); + } + } + + // Negative roots become complex + // (-a/b)^(c/d) = x + // <=> (-1)^(c/d) * (a/b)^(c/d) = x + // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x + // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x # DeMoivre's formula + // From which follows that only for c=0 the root is non-complex + if (this['s'] < C_ZERO) return null; + + // Now prime factor n and d + let N = factorize(this['n']); + let D = factorize(this['d']); + + // Exponentiate and take root for n and d individually + let n = C_ONE; + let d = C_ONE; + for (let k in N) { + if (k === '1') continue; + if (k === '0') { + n = C_ZERO; + break; + } + N[k]*= P['n']; + + if (N[k] % P['d'] === C_ZERO) { + N[k]/= P['d']; + } else return null; + n*= BigInt(k) ** N[k]; + } + + for (let k in D) { + if (k === '1') continue; + D[k]*= P['n']; + + if (D[k] % P['d'] === C_ZERO) { + D[k]/= P['d']; + } else return null; + d*= BigInt(k) ** D[k]; + } + + if (P['s'] < C_ZERO) { + return newFraction(d, n); + } + return newFraction(n, d); + }, + + /** + * Check if two rational numbers are the same + * + * Ex: new Fraction(19.6).equals([98, 5]); + **/ + "equals": function(a, b) { + + parse(a, b); + return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0 + }, + + /** + * Check if two rational numbers are the same + * + * Ex: new Fraction(19.6).equals([98, 5]); + **/ + "compare": function(a, b) { + + parse(a, b); + let t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]); + + return (C_ZERO < t) - (t < C_ZERO); + }, + + /** + * Calculates the ceil of a rational number + * + * Ex: new Fraction('4.(3)').ceil() => (5 / 1) + **/ + "ceil": function(places) { + + places = C_TEN ** BigInt(places || 0); + + return newFraction(this["s"] * places * this["n"] / this["d"] + + (places * this["n"] % this["d"] > C_ZERO && this["s"] >= C_ZERO ? C_ONE : C_ZERO), + places); + }, + + /** + * Calculates the floor of a rational number + * + * Ex: new Fraction('4.(3)').floor() => (4 / 1) + **/ + "floor": function(places) { + + places = C_TEN ** BigInt(places || 0); + + return newFraction(this["s"] * places * this["n"] / this["d"] - + (places * this["n"] % this["d"] > C_ZERO && this["s"] < C_ZERO ? C_ONE : C_ZERO), + places); + }, + + /** + * Rounds a rational numbers + * + * Ex: new Fraction('4.(3)').round() => (4 / 1) + **/ + "round": function(places) { + + places = C_TEN ** BigInt(places || 0); + + /* Derivation: + + s >= 0: + round(n / d) = trunc(n / d) + (n % d) / d >= 0.5 ? 1 : 0 + = trunc(n / d) + 2(n % d) >= d ? 1 : 0 + s < 0: + round(n / d) =-trunc(n / d) - (n % d) / d > 0.5 ? 1 : 0 + =-trunc(n / d) - 2(n % d) > d ? 1 : 0 + + =>: + + round(s * n / d) = s * trunc(n / d) + s * (C + 2(n % d) > d ? 1 : 0) + where C = s >= 0 ? 1 : 0, to fix the >= for the positve case. + */ + + return newFraction(this["s"] * places * this["n"] / this["d"] + + this["s"] * ((this["s"] >= C_ZERO ? C_ONE : C_ZERO) + C_TWO * (places * this["n"] % this["d"]) > this["d"] ? C_ONE : C_ZERO), + places); + }, + + /** + * Check if two rational numbers are divisible + * + * Ex: new Fraction(19.6).divisible(1.5); + */ + "divisible": function(a, b) { + + parse(a, b); + return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"]))); + }, + + /** + * Returns a decimal representation of the fraction + * + * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183 + **/ + 'valueOf': function() { + // Best we can do so far + return Number(this["s"] * this["n"]) / Number(this["d"]); + }, + + /** + * Creates a string representation of a fraction with all digits + * + * Ex: new Fraction("100.'91823'").toString() => "100.(91823)" + **/ + 'toString': function(dec) { + + let N = this["n"]; + let D = this["d"]; + + function trunc(x) { + return typeof x === 'bigint' ? x : Math.floor(x); + } + + dec = dec || 15; // 15 = decimal places when no repetition + + let cycLen = cycleLen(N, D); // Cycle length + let cycOff = cycleStart(N, D, cycLen); // Cycle start + + let str = this['s'] < C_ZERO ? "-" : ""; + + // Append integer part + str+= trunc(N / D); + + N%= D; + N*= C_TEN; + + if (N) + str+= "."; + + if (cycLen) { + + for (let i = cycOff; i--;) { + str+= trunc(N / D); + N%= D; + N*= C_TEN; + } + str+= "("; + for (let i = cycLen; i--;) { + str+= trunc(N / D); + N%= D; + N*= C_TEN; + } + str+= ")"; + } else { + for (let i = dec; N && i--;) { + str+= trunc(N / D); + N%= D; + N*= C_TEN; + } + } + return str; + }, + + /** + * Returns a string-fraction representation of a Fraction object + * + * Ex: new Fraction("1.'3'").toFraction() => "4 1/3" + **/ + 'toFraction': function(excludeWhole) { + + let n = this["n"]; + let d = this["d"]; + let str = this['s'] < C_ZERO ? "-" : ""; + + if (d === C_ONE) { + str+= n; + } else { + let whole = n / d; + if (excludeWhole && whole > C_ZERO) { + str+= whole; + str+= " "; + n%= d; + } + + str+= n; + str+= '/'; + str+= d; + } + return str; + }, + + /** + * Returns a latex representation of a Fraction object + * + * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}" + **/ + 'toLatex': function(excludeWhole) { + + let n = this["n"]; + let d = this["d"]; + let str = this['s'] < C_ZERO ? "-" : ""; + + if (d === C_ONE) { + str+= n; + } else { + let whole = n / d; + if (excludeWhole && whole > C_ZERO) { + str+= whole; + n%= d; + } + + str+= "\\frac{"; + str+= n; + str+= '}{'; + str+= d; + str+= '}'; + } + return str; + }, + + /** + * Returns an array of continued fraction elements + * + * Ex: new Fraction("7/8").toContinued() => [0,1,7] + */ + 'toContinued': function() { + + let a = this['n']; + let b = this['d']; + let res = []; + + do { + res.push(a / b); + let t = a % b; + a = b; + b = t; + } while (a !== C_ONE); + + return res; + }, + + "simplify": function(eps) { + + eps = eps || 0.001; + + const thisABS = this['abs'](); + const cont = thisABS['toContinued'](); + + for (let i = 1; i < cont.length; i++) { + + let s = newFraction(cont[i - 1], C_ONE); + for (let k = i - 2; k >= 0; k--) { + s = s['inverse']()['add'](cont[k]); + } + + if (Math.abs(s['sub'](thisABS).valueOf()) < eps) { + return s['mul'](this['s']); + } + } + return this; + } + }; + + if (typeof define === "function" && define["amd"]) { + define([], function() { + return Fraction; + }); + } else if (typeof exports === "object") { + Object.defineProperty(exports, "__esModule", { 'value': true }); + Fraction['default'] = Fraction; + Fraction['Fraction'] = Fraction; + module['exports'] = Fraction; + } else { + root['Fraction'] = Fraction; + } + +})(this); diff --git a/node_modules/fraction.js/fraction.cjs b/node_modules/fraction.js/fraction.cjs new file mode 100644 index 0000000..0a10d8c --- /dev/null +++ b/node_modules/fraction.js/fraction.cjs @@ -0,0 +1,904 @@ +/** + * @license Fraction.js v4.3.7 31/08/2023 + * https://www.xarg.org/2014/03/rational-numbers-in-javascript/ + * + * Copyright (c) 2023, Robert Eisele (robert@raw.org) + * Dual licensed under the MIT or GPL Version 2 licenses. + **/ + + +/** + * + * This class offers the possibility to calculate fractions. + * You can pass a fraction in different formats. Either as array, as double, as string or as an integer. + * + * Array/Object form + * [ 0 => <numerator>, 1 => <denominator> ] + * [ n => <numerator>, d => <denominator> ] + * + * Integer form + * - Single integer value + * + * Double form + * - Single double value + * + * String form + * 123.456 - a simple double + * 123/456 - a string fraction + * 123.'456' - a double with repeating decimal places + * 123.(456) - synonym + * 123.45'6' - a double with repeating last place + * 123.45(6) - synonym + * + * Example: + * + * var f = new Fraction("9.4'31'"); + * f.mul([-4, 3]).div(4.9); + * + */ + +(function(root) { + + "use strict"; + + // Maximum search depth for cyclic rational numbers. 2000 should be more than enough. + // Example: 1/7 = 0.(142857) has 6 repeating decimal places. + // If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits + var MAX_CYCLE_LEN = 2000; + + // Parsed data to avoid calling "new" all the time + var P = { + "s": 1, + "n": 0, + "d": 1 + }; + + function assign(n, s) { + + if (isNaN(n = parseInt(n, 10))) { + throw InvalidParameter(); + } + return n * s; + } + + // Creates a new Fraction internally without the need of the bulky constructor + function newFraction(n, d) { + + if (d === 0) { + throw DivisionByZero(); + } + + var f = Object.create(Fraction.prototype); + f["s"] = n < 0 ? -1 : 1; + + n = n < 0 ? -n : n; + + var a = gcd(n, d); + + f["n"] = n / a; + f["d"] = d / a; + return f; + } + + function factorize(num) { + + var factors = {}; + + var n = num; + var i = 2; + var s = 4; + + while (s <= n) { + + while (n % i === 0) { + n/= i; + factors[i] = (factors[i] || 0) + 1; + } + s+= 1 + 2 * i++; + } + + if (n !== num) { + if (n > 1) + factors[n] = (factors[n] || 0) + 1; + } else { + factors[num] = (factors[num] || 0) + 1; + } + return factors; + } + + var parse = function(p1, p2) { + + var n = 0, d = 1, s = 1; + var v = 0, w = 0, x = 0, y = 1, z = 1; + + var A = 0, B = 1; + var C = 1, D = 1; + + var N = 10000000; + var M; + + if (p1 === undefined || p1 === null) { + /* void */ + } else if (p2 !== undefined) { + n = p1; + d = p2; + s = n * d; + + if (n % 1 !== 0 || d % 1 !== 0) { + throw NonIntegerParameter(); + } + + } else + switch (typeof p1) { + + case "object": + { + if ("d" in p1 && "n" in p1) { + n = p1["n"]; + d = p1["d"]; + if ("s" in p1) + n*= p1["s"]; + } else if (0 in p1) { + n = p1[0]; + if (1 in p1) + d = p1[1]; + } else { + throw InvalidParameter(); + } + s = n * d; + break; + } + case "number": + { + if (p1 < 0) { + s = p1; + p1 = -p1; + } + + if (p1 % 1 === 0) { + n = p1; + } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow + + if (p1 >= 1) { + z = Math.pow(10, Math.floor(1 + Math.log(p1) / Math.LN10)); + p1/= z; + } + + // Using Farey Sequences + // http://www.johndcook.com/blog/2010/10/20/best-rational-approximation/ + + while (B <= N && D <= N) { + M = (A + C) / (B + D); + + if (p1 === M) { + if (B + D <= N) { + n = A + C; + d = B + D; + } else if (D > B) { + n = C; + d = D; + } else { + n = A; + d = B; + } + break; + + } else { + + if (p1 > M) { + A+= C; + B+= D; + } else { + C+= A; + D+= B; + } + + if (B > N) { + n = C; + d = D; + } else { + n = A; + d = B; + } + } + } + n*= z; + } else if (isNaN(p1) || isNaN(p2)) { + d = n = NaN; + } + break; + } + case "string": + { + B = p1.match(/\d+|./g); + + if (B === null) + throw InvalidParameter(); + + if (B[A] === '-') {// Check for minus sign at the beginning + s = -1; + A++; + } else if (B[A] === '+') {// Check for plus sign at the beginning + A++; + } + + if (B.length === A + 1) { // Check if it's just a simple number "1234" + w = assign(B[A++], s); + } else if (B[A + 1] === '.' || B[A] === '.') { // Check if it's a decimal number + + if (B[A] !== '.') { // Handle 0.5 and .5 + v = assign(B[A++], s); + } + A++; + + // Check for decimal places + if (A + 1 === B.length || B[A + 1] === '(' && B[A + 3] === ')' || B[A + 1] === "'" && B[A + 3] === "'") { + w = assign(B[A], s); + y = Math.pow(10, B[A].length); + A++; + } + + // Check for repeating places + if (B[A] === '(' && B[A + 2] === ')' || B[A] === "'" && B[A + 2] === "'") { + x = assign(B[A + 1], s); + z = Math.pow(10, B[A + 1].length) - 1; + A+= 3; + } + + } else if (B[A + 1] === '/' || B[A + 1] === ':') { // Check for a simple fraction "123/456" or "123:456" + w = assign(B[A], s); + y = assign(B[A + 2], 1); + A+= 3; + } else if (B[A + 3] === '/' && B[A + 1] === ' ') { // Check for a complex fraction "123 1/2" + v = assign(B[A], s); + w = assign(B[A + 2], s); + y = assign(B[A + 4], 1); + A+= 5; + } + + if (B.length <= A) { // Check for more tokens on the stack + d = y * z; + s = /* void */ + n = x + d * v + z * w; + break; + } + + /* Fall through on error */ + } + default: + throw InvalidParameter(); + } + + if (d === 0) { + throw DivisionByZero(); + } + + P["s"] = s < 0 ? -1 : 1; + P["n"] = Math.abs(n); + P["d"] = Math.abs(d); + }; + + function modpow(b, e, m) { + + var r = 1; + for (; e > 0; b = (b * b) % m, e >>= 1) { + + if (e & 1) { + r = (r * b) % m; + } + } + return r; + } + + + function cycleLen(n, d) { + + for (; d % 2 === 0; + d/= 2) { + } + + for (; d % 5 === 0; + d/= 5) { + } + + if (d === 1) // Catch non-cyclic numbers + return 0; + + // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem: + // 10^(d-1) % d == 1 + // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone, + // as we want to translate the numbers to strings. + + var rem = 10 % d; + var t = 1; + + for (; rem !== 1; t++) { + rem = rem * 10 % d; + + if (t > MAX_CYCLE_LEN) + return 0; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1` + } + return t; + } + + + function cycleStart(n, d, len) { + + var rem1 = 1; + var rem2 = modpow(10, len, d); + + for (var t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE) + // Solve 10^s == 10^(s+t) (mod d) + + if (rem1 === rem2) + return t; + + rem1 = rem1 * 10 % d; + rem2 = rem2 * 10 % d; + } + return 0; + } + + function gcd(a, b) { + + if (!a) + return b; + if (!b) + return a; + + while (1) { + a%= b; + if (!a) + return b; + b%= a; + if (!b) + return a; + } + }; + + /** + * Module constructor + * + * @constructor + * @param {number|Fraction=} a + * @param {number=} b + */ + function Fraction(a, b) { + + parse(a, b); + + if (this instanceof Fraction) { + a = gcd(P["d"], P["n"]); // Abuse variable a + this["s"] = P["s"]; + this["n"] = P["n"] / a; + this["d"] = P["d"] / a; + } else { + return newFraction(P['s'] * P['n'], P['d']); + } + } + + var DivisionByZero = function() { return new Error("Division by Zero"); }; + var InvalidParameter = function() { return new Error("Invalid argument"); }; + var NonIntegerParameter = function() { return new Error("Parameters must be integer"); }; + + Fraction.prototype = { + + "s": 1, + "n": 0, + "d": 1, + + /** + * Calculates the absolute value + * + * Ex: new Fraction(-4).abs() => 4 + **/ + "abs": function() { + + return newFraction(this["n"], this["d"]); + }, + + /** + * Inverts the sign of the current fraction + * + * Ex: new Fraction(-4).neg() => 4 + **/ + "neg": function() { + + return newFraction(-this["s"] * this["n"], this["d"]); + }, + + /** + * Adds two rational numbers + * + * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30 + **/ + "add": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"], + this["d"] * P["d"] + ); + }, + + /** + * Subtracts two rational numbers + * + * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30 + **/ + "sub": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"], + this["d"] * P["d"] + ); + }, + + /** + * Multiplies two rational numbers + * + * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111 + **/ + "mul": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * P["s"] * this["n"] * P["n"], + this["d"] * P["d"] + ); + }, + + /** + * Divides two rational numbers + * + * Ex: new Fraction("-17.(345)").inverse().div(3) + **/ + "div": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * P["s"] * this["n"] * P["d"], + this["d"] * P["n"] + ); + }, + + /** + * Clones the actual object + * + * Ex: new Fraction("-17.(345)").clone() + **/ + "clone": function() { + return newFraction(this['s'] * this['n'], this['d']); + }, + + /** + * Calculates the modulo of two rational numbers - a more precise fmod + * + * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6) + **/ + "mod": function(a, b) { + + if (isNaN(this['n']) || isNaN(this['d'])) { + return new Fraction(NaN); + } + + if (a === undefined) { + return newFraction(this["s"] * this["n"] % this["d"], 1); + } + + parse(a, b); + if (0 === P["n"] && 0 === this["d"]) { + throw DivisionByZero(); + } + + /* + * First silly attempt, kinda slow + * + return that["sub"]({ + "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)), + "d": num["d"], + "s": this["s"] + });*/ + + /* + * New attempt: a1 / b1 = a2 / b2 * q + r + * => b2 * a1 = a2 * b1 * q + b1 * b2 * r + * => (b2 * a1 % a2 * b1) / (b1 * b2) + */ + return newFraction( + this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]), + P["d"] * this["d"] + ); + }, + + /** + * Calculates the fractional gcd of two rational numbers + * + * Ex: new Fraction(5,8).gcd(3,7) => 1/56 + */ + "gcd": function(a, b) { + + parse(a, b); + + // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d) + + return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]); + }, + + /** + * Calculates the fractional lcm of two rational numbers + * + * Ex: new Fraction(5,8).lcm(3,7) => 15 + */ + "lcm": function(a, b) { + + parse(a, b); + + // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d) + + if (P["n"] === 0 && this["n"] === 0) { + return newFraction(0, 1); + } + return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"])); + }, + + /** + * Calculates the ceil of a rational number + * + * Ex: new Fraction('4.(3)').ceil() => (5 / 1) + **/ + "ceil": function(places) { + + places = Math.pow(10, places || 0); + + if (isNaN(this["n"]) || isNaN(this["d"])) { + return new Fraction(NaN); + } + return newFraction(Math.ceil(places * this["s"] * this["n"] / this["d"]), places); + }, + + /** + * Calculates the floor of a rational number + * + * Ex: new Fraction('4.(3)').floor() => (4 / 1) + **/ + "floor": function(places) { + + places = Math.pow(10, places || 0); + + if (isNaN(this["n"]) || isNaN(this["d"])) { + return new Fraction(NaN); + } + return newFraction(Math.floor(places * this["s"] * this["n"] / this["d"]), places); + }, + + /** + * Rounds a rational numbers + * + * Ex: new Fraction('4.(3)').round() => (4 / 1) + **/ + "round": function(places) { + + places = Math.pow(10, places || 0); + + if (isNaN(this["n"]) || isNaN(this["d"])) { + return new Fraction(NaN); + } + return newFraction(Math.round(places * this["s"] * this["n"] / this["d"]), places); + }, + + /** + * Rounds a rational number to a multiple of another rational number + * + * Ex: new Fraction('0.9').roundTo("1/8") => 7 / 8 + **/ + "roundTo": function(a, b) { + + /* + k * x/y ≤ a/b < (k+1) * x/y + ⇔ k ≤ a/b / (x/y) < (k+1) + ⇔ k = floor(a/b * y/x) + */ + + parse(a, b); + + return newFraction(this['s'] * Math.round(this['n'] * P['d'] / (this['d'] * P['n'])) * P['n'], P['d']); + }, + + /** + * Gets the inverse of the fraction, means numerator and denominator are exchanged + * + * Ex: new Fraction([-3, 4]).inverse() => -4 / 3 + **/ + "inverse": function() { + + return newFraction(this["s"] * this["d"], this["n"]); + }, + + /** + * Calculates the fraction to some rational exponent, if possible + * + * Ex: new Fraction(-1,2).pow(-3) => -8 + */ + "pow": function(a, b) { + + parse(a, b); + + // Trivial case when exp is an integer + + if (P['d'] === 1) { + + if (P['s'] < 0) { + return newFraction(Math.pow(this['s'] * this["d"], P['n']), Math.pow(this["n"], P['n'])); + } else { + return newFraction(Math.pow(this['s'] * this["n"], P['n']), Math.pow(this["d"], P['n'])); + } + } + + // Negative roots become complex + // (-a/b)^(c/d) = x + // <=> (-1)^(c/d) * (a/b)^(c/d) = x + // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x # rotate 1 by 180° + // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x # DeMoivre's formula in Q ( https://proofwiki.org/wiki/De_Moivre%27s_Formula/Rational_Index ) + // From which follows that only for c=0 the root is non-complex. c/d is a reduced fraction, so that sin(c/dpi)=0 occurs for d=1, which is handled by our trivial case. + if (this['s'] < 0) return null; + + // Now prime factor n and d + var N = factorize(this['n']); + var D = factorize(this['d']); + + // Exponentiate and take root for n and d individually + var n = 1; + var d = 1; + for (var k in N) { + if (k === '1') continue; + if (k === '0') { + n = 0; + break; + } + N[k]*= P['n']; + + if (N[k] % P['d'] === 0) { + N[k]/= P['d']; + } else return null; + n*= Math.pow(k, N[k]); + } + + for (var k in D) { + if (k === '1') continue; + D[k]*= P['n']; + + if (D[k] % P['d'] === 0) { + D[k]/= P['d']; + } else return null; + d*= Math.pow(k, D[k]); + } + + if (P['s'] < 0) { + return newFraction(d, n); + } + return newFraction(n, d); + }, + + /** + * Check if two rational numbers are the same + * + * Ex: new Fraction(19.6).equals([98, 5]); + **/ + "equals": function(a, b) { + + parse(a, b); + return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0 + }, + + /** + * Check if two rational numbers are the same + * + * Ex: new Fraction(19.6).equals([98, 5]); + **/ + "compare": function(a, b) { + + parse(a, b); + var t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]); + return (0 < t) - (t < 0); + }, + + "simplify": function(eps) { + + if (isNaN(this['n']) || isNaN(this['d'])) { + return this; + } + + eps = eps || 0.001; + + var thisABS = this['abs'](); + var cont = thisABS['toContinued'](); + + for (var i = 1; i < cont.length; i++) { + + var s = newFraction(cont[i - 1], 1); + for (var k = i - 2; k >= 0; k--) { + s = s['inverse']()['add'](cont[k]); + } + + if (Math.abs(s['sub'](thisABS).valueOf()) < eps) { + return s['mul'](this['s']); + } + } + return this; + }, + + /** + * Check if two rational numbers are divisible + * + * Ex: new Fraction(19.6).divisible(1.5); + */ + "divisible": function(a, b) { + + parse(a, b); + return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"]))); + }, + + /** + * Returns a decimal representation of the fraction + * + * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183 + **/ + 'valueOf': function() { + + return this["s"] * this["n"] / this["d"]; + }, + + /** + * Returns a string-fraction representation of a Fraction object + * + * Ex: new Fraction("1.'3'").toFraction(true) => "4 1/3" + **/ + 'toFraction': function(excludeWhole) { + + var whole, str = ""; + var n = this["n"]; + var d = this["d"]; + if (this["s"] < 0) { + str+= '-'; + } + + if (d === 1) { + str+= n; + } else { + + if (excludeWhole && (whole = Math.floor(n / d)) > 0) { + str+= whole; + str+= " "; + n%= d; + } + + str+= n; + str+= '/'; + str+= d; + } + return str; + }, + + /** + * Returns a latex representation of a Fraction object + * + * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}" + **/ + 'toLatex': function(excludeWhole) { + + var whole, str = ""; + var n = this["n"]; + var d = this["d"]; + if (this["s"] < 0) { + str+= '-'; + } + + if (d === 1) { + str+= n; + } else { + + if (excludeWhole && (whole = Math.floor(n / d)) > 0) { + str+= whole; + n%= d; + } + + str+= "\\frac{"; + str+= n; + str+= '}{'; + str+= d; + str+= '}'; + } + return str; + }, + + /** + * Returns an array of continued fraction elements + * + * Ex: new Fraction("7/8").toContinued() => [0,1,7] + */ + 'toContinued': function() { + + var t; + var a = this['n']; + var b = this['d']; + var res = []; + + if (isNaN(a) || isNaN(b)) { + return res; + } + + do { + res.push(Math.floor(a / b)); + t = a % b; + a = b; + b = t; + } while (a !== 1); + + return res; + }, + + /** + * Creates a string representation of a fraction with all digits + * + * Ex: new Fraction("100.'91823'").toString() => "100.(91823)" + **/ + 'toString': function(dec) { + + var N = this["n"]; + var D = this["d"]; + + if (isNaN(N) || isNaN(D)) { + return "NaN"; + } + + dec = dec || 15; // 15 = decimal places when no repetation + + var cycLen = cycleLen(N, D); // Cycle length + var cycOff = cycleStart(N, D, cycLen); // Cycle start + + var str = this['s'] < 0 ? "-" : ""; + + str+= N / D | 0; + + N%= D; + N*= 10; + + if (N) + str+= "."; + + if (cycLen) { + + for (var i = cycOff; i--;) { + str+= N / D | 0; + N%= D; + N*= 10; + } + str+= "("; + for (var i = cycLen; i--;) { + str+= N / D | 0; + N%= D; + N*= 10; + } + str+= ")"; + } else { + for (var i = dec; N && i--;) { + str+= N / D | 0; + N%= D; + N*= 10; + } + } + return str; + } + }; + + if (typeof exports === "object") { + Object.defineProperty(exports, "__esModule", { 'value': true }); + exports['default'] = Fraction; + module['exports'] = Fraction; + } else { + root['Fraction'] = Fraction; + } + +})(this); diff --git a/node_modules/fraction.js/fraction.d.ts b/node_modules/fraction.js/fraction.d.ts new file mode 100644 index 0000000..e62cfe1 --- /dev/null +++ b/node_modules/fraction.js/fraction.d.ts @@ -0,0 +1,60 @@ +declare module 'Fraction';
+
+export interface NumeratorDenominator {
+ n: number;
+ d: number;
+}
+
+type FractionConstructor = {
+ (fraction: Fraction): Fraction;
+ (num: number | string): Fraction;
+ (numerator: number, denominator: number): Fraction;
+ (numbers: [number | string, number | string]): Fraction;
+ (fraction: NumeratorDenominator): Fraction;
+ (firstValue: Fraction | number | string | [number | string, number | string] | NumeratorDenominator, secondValue?: number): Fraction;
+};
+
+export default class Fraction {
+ constructor (fraction: Fraction);
+ constructor (num: number | string);
+ constructor (numerator: number, denominator: number);
+ constructor (numbers: [number | string, number | string]);
+ constructor (fraction: NumeratorDenominator);
+ constructor (firstValue: Fraction | number | string | [number | string, number | string] | NumeratorDenominator, secondValue?: number);
+
+ s: number;
+ n: number;
+ d: number;
+
+ abs(): Fraction;
+ neg(): Fraction;
+
+ add: FractionConstructor;
+ sub: FractionConstructor;
+ mul: FractionConstructor;
+ div: FractionConstructor;
+ pow: FractionConstructor;
+ gcd: FractionConstructor;
+ lcm: FractionConstructor;
+
+ mod(n?: number | string | Fraction): Fraction;
+
+ ceil(places?: number): Fraction;
+ floor(places?: number): Fraction;
+ round(places?: number): Fraction;
+
+ inverse(): Fraction;
+
+ simplify(eps?: number): Fraction;
+
+ equals(n: number | string | Fraction): boolean;
+ compare(n: number | string | Fraction): number;
+ divisible(n: number | string | Fraction): boolean;
+
+ valueOf(): number;
+ toString(decimalPlaces?: number): string;
+ toLatex(excludeWhole?: boolean): string;
+ toFraction(excludeWhole?: boolean): string;
+ toContinued(): number[];
+ clone(): Fraction;
+}
diff --git a/node_modules/fraction.js/fraction.js b/node_modules/fraction.js/fraction.js new file mode 100644 index 0000000..b9780e0 --- /dev/null +++ b/node_modules/fraction.js/fraction.js @@ -0,0 +1,891 @@ +/** + * @license Fraction.js v4.3.7 31/08/2023 + * https://www.xarg.org/2014/03/rational-numbers-in-javascript/ + * + * Copyright (c) 2023, Robert Eisele (robert@raw.org) + * Dual licensed under the MIT or GPL Version 2 licenses. + **/ + + +/** + * + * This class offers the possibility to calculate fractions. + * You can pass a fraction in different formats. Either as array, as double, as string or as an integer. + * + * Array/Object form + * [ 0 => <numerator>, 1 => <denominator> ] + * [ n => <numerator>, d => <denominator> ] + * + * Integer form + * - Single integer value + * + * Double form + * - Single double value + * + * String form + * 123.456 - a simple double + * 123/456 - a string fraction + * 123.'456' - a double with repeating decimal places + * 123.(456) - synonym + * 123.45'6' - a double with repeating last place + * 123.45(6) - synonym + * + * Example: + * + * var f = new Fraction("9.4'31'"); + * f.mul([-4, 3]).div(4.9); + * + */ + + +// Maximum search depth for cyclic rational numbers. 2000 should be more than enough. +// Example: 1/7 = 0.(142857) has 6 repeating decimal places. +// If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits +var MAX_CYCLE_LEN = 2000; + +// Parsed data to avoid calling "new" all the time +var P = { + "s": 1, + "n": 0, + "d": 1 +}; + +function assign(n, s) { + + if (isNaN(n = parseInt(n, 10))) { + throw InvalidParameter(); + } + return n * s; +} + +// Creates a new Fraction internally without the need of the bulky constructor +function newFraction(n, d) { + + if (d === 0) { + throw DivisionByZero(); + } + + var f = Object.create(Fraction.prototype); + f["s"] = n < 0 ? -1 : 1; + + n = n < 0 ? -n : n; + + var a = gcd(n, d); + + f["n"] = n / a; + f["d"] = d / a; + return f; +} + +function factorize(num) { + + var factors = {}; + + var n = num; + var i = 2; + var s = 4; + + while (s <= n) { + + while (n % i === 0) { + n/= i; + factors[i] = (factors[i] || 0) + 1; + } + s+= 1 + 2 * i++; + } + + if (n !== num) { + if (n > 1) + factors[n] = (factors[n] || 0) + 1; + } else { + factors[num] = (factors[num] || 0) + 1; + } + return factors; +} + +var parse = function(p1, p2) { + + var n = 0, d = 1, s = 1; + var v = 0, w = 0, x = 0, y = 1, z = 1; + + var A = 0, B = 1; + var C = 1, D = 1; + + var N = 10000000; + var M; + + if (p1 === undefined || p1 === null) { + /* void */ + } else if (p2 !== undefined) { + n = p1; + d = p2; + s = n * d; + + if (n % 1 !== 0 || d % 1 !== 0) { + throw NonIntegerParameter(); + } + + } else + switch (typeof p1) { + + case "object": + { + if ("d" in p1 && "n" in p1) { + n = p1["n"]; + d = p1["d"]; + if ("s" in p1) + n*= p1["s"]; + } else if (0 in p1) { + n = p1[0]; + if (1 in p1) + d = p1[1]; + } else { + throw InvalidParameter(); + } + s = n * d; + break; + } + case "number": + { + if (p1 < 0) { + s = p1; + p1 = -p1; + } + + if (p1 % 1 === 0) { + n = p1; + } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow + + if (p1 >= 1) { + z = Math.pow(10, Math.floor(1 + Math.log(p1) / Math.LN10)); + p1/= z; + } + + // Using Farey Sequences + // http://www.johndcook.com/blog/2010/10/20/best-rational-approximation/ + + while (B <= N && D <= N) { + M = (A + C) / (B + D); + + if (p1 === M) { + if (B + D <= N) { + n = A + C; + d = B + D; + } else if (D > B) { + n = C; + d = D; + } else { + n = A; + d = B; + } + break; + + } else { + + if (p1 > M) { + A+= C; + B+= D; + } else { + C+= A; + D+= B; + } + + if (B > N) { + n = C; + d = D; + } else { + n = A; + d = B; + } + } + } + n*= z; + } else if (isNaN(p1) || isNaN(p2)) { + d = n = NaN; + } + break; + } + case "string": + { + B = p1.match(/\d+|./g); + + if (B === null) + throw InvalidParameter(); + + if (B[A] === '-') {// Check for minus sign at the beginning + s = -1; + A++; + } else if (B[A] === '+') {// Check for plus sign at the beginning + A++; + } + + if (B.length === A + 1) { // Check if it's just a simple number "1234" + w = assign(B[A++], s); + } else if (B[A + 1] === '.' || B[A] === '.') { // Check if it's a decimal number + + if (B[A] !== '.') { // Handle 0.5 and .5 + v = assign(B[A++], s); + } + A++; + + // Check for decimal places + if (A + 1 === B.length || B[A + 1] === '(' && B[A + 3] === ')' || B[A + 1] === "'" && B[A + 3] === "'") { + w = assign(B[A], s); + y = Math.pow(10, B[A].length); + A++; + } + + // Check for repeating places + if (B[A] === '(' && B[A + 2] === ')' || B[A] === "'" && B[A + 2] === "'") { + x = assign(B[A + 1], s); + z = Math.pow(10, B[A + 1].length) - 1; + A+= 3; + } + + } else if (B[A + 1] === '/' || B[A + 1] === ':') { // Check for a simple fraction "123/456" or "123:456" + w = assign(B[A], s); + y = assign(B[A + 2], 1); + A+= 3; + } else if (B[A + 3] === '/' && B[A + 1] === ' ') { // Check for a complex fraction "123 1/2" + v = assign(B[A], s); + w = assign(B[A + 2], s); + y = assign(B[A + 4], 1); + A+= 5; + } + + if (B.length <= A) { // Check for more tokens on the stack + d = y * z; + s = /* void */ + n = x + d * v + z * w; + break; + } + + /* Fall through on error */ + } + default: + throw InvalidParameter(); + } + + if (d === 0) { + throw DivisionByZero(); + } + + P["s"] = s < 0 ? -1 : 1; + P["n"] = Math.abs(n); + P["d"] = Math.abs(d); +}; + +function modpow(b, e, m) { + + var r = 1; + for (; e > 0; b = (b * b) % m, e >>= 1) { + + if (e & 1) { + r = (r * b) % m; + } + } + return r; +} + + +function cycleLen(n, d) { + + for (; d % 2 === 0; + d/= 2) { + } + + for (; d % 5 === 0; + d/= 5) { + } + + if (d === 1) // Catch non-cyclic numbers + return 0; + + // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem: + // 10^(d-1) % d == 1 + // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone, + // as we want to translate the numbers to strings. + + var rem = 10 % d; + var t = 1; + + for (; rem !== 1; t++) { + rem = rem * 10 % d; + + if (t > MAX_CYCLE_LEN) + return 0; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1` + } + return t; +} + + +function cycleStart(n, d, len) { + + var rem1 = 1; + var rem2 = modpow(10, len, d); + + for (var t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE) + // Solve 10^s == 10^(s+t) (mod d) + + if (rem1 === rem2) + return t; + + rem1 = rem1 * 10 % d; + rem2 = rem2 * 10 % d; + } + return 0; +} + +function gcd(a, b) { + + if (!a) + return b; + if (!b) + return a; + + while (1) { + a%= b; + if (!a) + return b; + b%= a; + if (!b) + return a; + } +}; + +/** + * Module constructor + * + * @constructor + * @param {number|Fraction=} a + * @param {number=} b + */ +export default function Fraction(a, b) { + + parse(a, b); + + if (this instanceof Fraction) { + a = gcd(P["d"], P["n"]); // Abuse variable a + this["s"] = P["s"]; + this["n"] = P["n"] / a; + this["d"] = P["d"] / a; + } else { + return newFraction(P['s'] * P['n'], P['d']); + } +} + +var DivisionByZero = function() { return new Error("Division by Zero"); }; +var InvalidParameter = function() { return new Error("Invalid argument"); }; +var NonIntegerParameter = function() { return new Error("Parameters must be integer"); }; + +Fraction.prototype = { + + "s": 1, + "n": 0, + "d": 1, + + /** + * Calculates the absolute value + * + * Ex: new Fraction(-4).abs() => 4 + **/ + "abs": function() { + + return newFraction(this["n"], this["d"]); + }, + + /** + * Inverts the sign of the current fraction + * + * Ex: new Fraction(-4).neg() => 4 + **/ + "neg": function() { + + return newFraction(-this["s"] * this["n"], this["d"]); + }, + + /** + * Adds two rational numbers + * + * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30 + **/ + "add": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"], + this["d"] * P["d"] + ); + }, + + /** + * Subtracts two rational numbers + * + * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30 + **/ + "sub": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"], + this["d"] * P["d"] + ); + }, + + /** + * Multiplies two rational numbers + * + * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111 + **/ + "mul": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * P["s"] * this["n"] * P["n"], + this["d"] * P["d"] + ); + }, + + /** + * Divides two rational numbers + * + * Ex: new Fraction("-17.(345)").inverse().div(3) + **/ + "div": function(a, b) { + + parse(a, b); + return newFraction( + this["s"] * P["s"] * this["n"] * P["d"], + this["d"] * P["n"] + ); + }, + + /** + * Clones the actual object + * + * Ex: new Fraction("-17.(345)").clone() + **/ + "clone": function() { + return newFraction(this['s'] * this['n'], this['d']); + }, + + /** + * Calculates the modulo of two rational numbers - a more precise fmod + * + * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6) + **/ + "mod": function(a, b) { + + if (isNaN(this['n']) || isNaN(this['d'])) { + return new Fraction(NaN); + } + + if (a === undefined) { + return newFraction(this["s"] * this["n"] % this["d"], 1); + } + + parse(a, b); + if (0 === P["n"] && 0 === this["d"]) { + throw DivisionByZero(); + } + + /* + * First silly attempt, kinda slow + * + return that["sub"]({ + "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)), + "d": num["d"], + "s": this["s"] + });*/ + + /* + * New attempt: a1 / b1 = a2 / b2 * q + r + * => b2 * a1 = a2 * b1 * q + b1 * b2 * r + * => (b2 * a1 % a2 * b1) / (b1 * b2) + */ + return newFraction( + this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]), + P["d"] * this["d"] + ); + }, + + /** + * Calculates the fractional gcd of two rational numbers + * + * Ex: new Fraction(5,8).gcd(3,7) => 1/56 + */ + "gcd": function(a, b) { + + parse(a, b); + + // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d) + + return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]); + }, + + /** + * Calculates the fractional lcm of two rational numbers + * + * Ex: new Fraction(5,8).lcm(3,7) => 15 + */ + "lcm": function(a, b) { + + parse(a, b); + + // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d) + + if (P["n"] === 0 && this["n"] === 0) { + return newFraction(0, 1); + } + return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"])); + }, + + /** + * Calculates the ceil of a rational number + * + * Ex: new Fraction('4.(3)').ceil() => (5 / 1) + **/ + "ceil": function(places) { + + places = Math.pow(10, places || 0); + + if (isNaN(this["n"]) || isNaN(this["d"])) { + return new Fraction(NaN); + } + return newFraction(Math.ceil(places * this["s"] * this["n"] / this["d"]), places); + }, + + /** + * Calculates the floor of a rational number + * + * Ex: new Fraction('4.(3)').floor() => (4 / 1) + **/ + "floor": function(places) { + + places = Math.pow(10, places || 0); + + if (isNaN(this["n"]) || isNaN(this["d"])) { + return new Fraction(NaN); + } + return newFraction(Math.floor(places * this["s"] * this["n"] / this["d"]), places); + }, + + /** + * Rounds a rational number + * + * Ex: new Fraction('4.(3)').round() => (4 / 1) + **/ + "round": function(places) { + + places = Math.pow(10, places || 0); + + if (isNaN(this["n"]) || isNaN(this["d"])) { + return new Fraction(NaN); + } + return newFraction(Math.round(places * this["s"] * this["n"] / this["d"]), places); + }, + + /** + * Rounds a rational number to a multiple of another rational number + * + * Ex: new Fraction('0.9').roundTo("1/8") => 7 / 8 + **/ + "roundTo": function(a, b) { + + /* + k * x/y ≤ a/b < (k+1) * x/y + ⇔ k ≤ a/b / (x/y) < (k+1) + ⇔ k = floor(a/b * y/x) + */ + + parse(a, b); + + return newFraction(this['s'] * Math.round(this['n'] * P['d'] / (this['d'] * P['n'])) * P['n'], P['d']); + }, + + /** + * Gets the inverse of the fraction, means numerator and denominator are exchanged + * + * Ex: new Fraction([-3, 4]).inverse() => -4 / 3 + **/ + "inverse": function() { + + return newFraction(this["s"] * this["d"], this["n"]); + }, + + /** + * Calculates the fraction to some rational exponent, if possible + * + * Ex: new Fraction(-1,2).pow(-3) => -8 + */ + "pow": function(a, b) { + + parse(a, b); + + // Trivial case when exp is an integer + + if (P['d'] === 1) { + + if (P['s'] < 0) { + return newFraction(Math.pow(this['s'] * this["d"], P['n']), Math.pow(this["n"], P['n'])); + } else { + return newFraction(Math.pow(this['s'] * this["n"], P['n']), Math.pow(this["d"], P['n'])); + } + } + + // Negative roots become complex + // (-a/b)^(c/d) = x + // <=> (-1)^(c/d) * (a/b)^(c/d) = x + // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x # rotate 1 by 180° + // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x # DeMoivre's formula in Q ( https://proofwiki.org/wiki/De_Moivre%27s_Formula/Rational_Index ) + // From which follows that only for c=0 the root is non-complex. c/d is a reduced fraction, so that sin(c/dpi)=0 occurs for d=1, which is handled by our trivial case. + if (this['s'] < 0) return null; + + // Now prime factor n and d + var N = factorize(this['n']); + var D = factorize(this['d']); + + // Exponentiate and take root for n and d individually + var n = 1; + var d = 1; + for (var k in N) { + if (k === '1') continue; + if (k === '0') { + n = 0; + break; + } + N[k]*= P['n']; + + if (N[k] % P['d'] === 0) { + N[k]/= P['d']; + } else return null; + n*= Math.pow(k, N[k]); + } + + for (var k in D) { + if (k === '1') continue; + D[k]*= P['n']; + + if (D[k] % P['d'] === 0) { + D[k]/= P['d']; + } else return null; + d*= Math.pow(k, D[k]); + } + + if (P['s'] < 0) { + return newFraction(d, n); + } + return newFraction(n, d); + }, + + /** + * Check if two rational numbers are the same + * + * Ex: new Fraction(19.6).equals([98, 5]); + **/ + "equals": function(a, b) { + + parse(a, b); + return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0 + }, + + /** + * Check if two rational numbers are the same + * + * Ex: new Fraction(19.6).equals([98, 5]); + **/ + "compare": function(a, b) { + + parse(a, b); + var t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]); + return (0 < t) - (t < 0); + }, + + "simplify": function(eps) { + + if (isNaN(this['n']) || isNaN(this['d'])) { + return this; + } + + eps = eps || 0.001; + + var thisABS = this['abs'](); + var cont = thisABS['toContinued'](); + + for (var i = 1; i < cont.length; i++) { + + var s = newFraction(cont[i - 1], 1); + for (var k = i - 2; k >= 0; k--) { + s = s['inverse']()['add'](cont[k]); + } + + if (Math.abs(s['sub'](thisABS).valueOf()) < eps) { + return s['mul'](this['s']); + } + } + return this; + }, + + /** + * Check if two rational numbers are divisible + * + * Ex: new Fraction(19.6).divisible(1.5); + */ + "divisible": function(a, b) { + + parse(a, b); + return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"]))); + }, + + /** + * Returns a decimal representation of the fraction + * + * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183 + **/ + 'valueOf': function() { + + return this["s"] * this["n"] / this["d"]; + }, + + /** + * Returns a string-fraction representation of a Fraction object + * + * Ex: new Fraction("1.'3'").toFraction(true) => "4 1/3" + **/ + 'toFraction': function(excludeWhole) { + + var whole, str = ""; + var n = this["n"]; + var d = this["d"]; + if (this["s"] < 0) { + str+= '-'; + } + + if (d === 1) { + str+= n; + } else { + + if (excludeWhole && (whole = Math.floor(n / d)) > 0) { + str+= whole; + str+= " "; + n%= d; + } + + str+= n; + str+= '/'; + str+= d; + } + return str; + }, + + /** + * Returns a latex representation of a Fraction object + * + * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}" + **/ + 'toLatex': function(excludeWhole) { + + var whole, str = ""; + var n = this["n"]; + var d = this["d"]; + if (this["s"] < 0) { + str+= '-'; + } + + if (d === 1) { + str+= n; + } else { + + if (excludeWhole && (whole = Math.floor(n / d)) > 0) { + str+= whole; + n%= d; + } + + str+= "\\frac{"; + str+= n; + str+= '}{'; + str+= d; + str+= '}'; + } + return str; + }, + + /** + * Returns an array of continued fraction elements + * + * Ex: new Fraction("7/8").toContinued() => [0,1,7] + */ + 'toContinued': function() { + + var t; + var a = this['n']; + var b = this['d']; + var res = []; + + if (isNaN(a) || isNaN(b)) { + return res; + } + + do { + res.push(Math.floor(a / b)); + t = a % b; + a = b; + b = t; + } while (a !== 1); + + return res; + }, + + /** + * Creates a string representation of a fraction with all digits + * + * Ex: new Fraction("100.'91823'").toString() => "100.(91823)" + **/ + 'toString': function(dec) { + + var N = this["n"]; + var D = this["d"]; + + if (isNaN(N) || isNaN(D)) { + return "NaN"; + } + + dec = dec || 15; // 15 = decimal places when no repetation + + var cycLen = cycleLen(N, D); // Cycle length + var cycOff = cycleStart(N, D, cycLen); // Cycle start + + var str = this['s'] < 0 ? "-" : ""; + + str+= N / D | 0; + + N%= D; + N*= 10; + + if (N) + str+= "."; + + if (cycLen) { + + for (var i = cycOff; i--;) { + str+= N / D | 0; + N%= D; + N*= 10; + } + str+= "("; + for (var i = cycLen; i--;) { + str+= N / D | 0; + N%= D; + N*= 10; + } + str+= ")"; + } else { + for (var i = dec; N && i--;) { + str+= N / D | 0; + N%= D; + N*= 10; + } + } + return str; + } +}; diff --git a/node_modules/fraction.js/fraction.min.js b/node_modules/fraction.js/fraction.min.js new file mode 100644 index 0000000..1cfa151 --- /dev/null +++ b/node_modules/fraction.js/fraction.min.js @@ -0,0 +1,18 @@ +/* +Fraction.js v4.3.7 31/08/2023 +https://www.xarg.org/2014/03/rational-numbers-in-javascript/ + +Copyright (c) 2023, Robert Eisele (robert@raw.org) +Dual licensed under the MIT or GPL Version 2 licenses. +*/ +(function(B){function x(){return Error("Invalid argument")}function z(){return Error("Division by Zero")}function n(a,c){var b=0,d=1,f=1,l=0,k=0,t=0,y=1,u=1,g=0,h=1,v=1,q=1;if(void 0!==a&&null!==a)if(void 0!==c){if(b=a,d=c,f=b*d,0!==b%1||0!==d%1)throw Error("Parameters must be integer");}else switch(typeof a){case "object":if("d"in a&&"n"in a)b=a.n,d=a.d,"s"in a&&(b*=a.s);else if(0 in a)b=a[0],1 in a&&(d=a[1]);else throw x();f=b*d;break;case "number":0>a&&(f=a,a=-a);if(0===a%1)b=a;else if(0<a){1<= +a&&(u=Math.pow(10,Math.floor(1+Math.log(a)/Math.LN10)),a/=u);for(;1E7>=h&&1E7>=q;)if(b=(g+v)/(h+q),a===b){1E7>=h+q?(b=g+v,d=h+q):q>h?(b=v,d=q):(b=g,d=h);break}else a>b?(g+=v,h+=q):(v+=g,q+=h),1E7<h?(b=v,d=q):(b=g,d=h);b*=u}else if(isNaN(a)||isNaN(c))d=b=NaN;break;case "string":h=a.match(/\d+|./g);if(null===h)throw x();"-"===h[g]?(f=-1,g++):"+"===h[g]&&g++;if(h.length===g+1)k=r(h[g++],f);else if("."===h[g+1]||"."===h[g]){"."!==h[g]&&(l=r(h[g++],f));g++;if(g+1===h.length||"("===h[g+1]&&")"===h[g+3]|| +"'"===h[g+1]&&"'"===h[g+3])k=r(h[g],f),y=Math.pow(10,h[g].length),g++;if("("===h[g]&&")"===h[g+2]||"'"===h[g]&&"'"===h[g+2])t=r(h[g+1],f),u=Math.pow(10,h[g+1].length)-1,g+=3}else"/"===h[g+1]||":"===h[g+1]?(k=r(h[g],f),y=r(h[g+2],1),g+=3):"/"===h[g+3]&&" "===h[g+1]&&(l=r(h[g],f),k=r(h[g+2],f),y=r(h[g+4],1),g+=5);if(h.length<=g){d=y*u;f=b=t+d*l+u*k;break}default:throw x();}if(0===d)throw z();e.s=0>f?-1:1;e.n=Math.abs(b);e.d=Math.abs(d)}function r(a,c){if(isNaN(a=parseInt(a,10)))throw x();return a*c} +function m(a,c){if(0===c)throw z();var b=Object.create(p.prototype);b.s=0>a?-1:1;a=0>a?-a:a;var d=w(a,c);b.n=a/d;b.d=c/d;return b}function A(a){for(var c={},b=a,d=2,f=4;f<=b;){for(;0===b%d;)b/=d,c[d]=(c[d]||0)+1;f+=1+2*d++}b!==a?1<b&&(c[b]=(c[b]||0)+1):c[a]=(c[a]||0)+1;return c}function w(a,c){if(!a)return c;if(!c)return a;for(;;){a%=c;if(!a)return c;c%=a;if(!c)return a}}function p(a,c){n(a,c);if(this instanceof p)a=w(e.d,e.n),this.s=e.s,this.n=e.n/a,this.d=e.d/a;else return m(e.s*e.n,e.d)}var e= +{s:1,n:0,d:1};p.prototype={s:1,n:0,d:1,abs:function(){return m(this.n,this.d)},neg:function(){return m(-this.s*this.n,this.d)},add:function(a,c){n(a,c);return m(this.s*this.n*e.d+e.s*this.d*e.n,this.d*e.d)},sub:function(a,c){n(a,c);return m(this.s*this.n*e.d-e.s*this.d*e.n,this.d*e.d)},mul:function(a,c){n(a,c);return m(this.s*e.s*this.n*e.n,this.d*e.d)},div:function(a,c){n(a,c);return m(this.s*e.s*this.n*e.d,this.d*e.n)},clone:function(){return m(this.s*this.n,this.d)},mod:function(a,c){if(isNaN(this.n)|| +isNaN(this.d))return new p(NaN);if(void 0===a)return m(this.s*this.n%this.d,1);n(a,c);if(0===e.n&&0===this.d)throw z();return m(this.s*e.d*this.n%(e.n*this.d),e.d*this.d)},gcd:function(a,c){n(a,c);return m(w(e.n,this.n)*w(e.d,this.d),e.d*this.d)},lcm:function(a,c){n(a,c);return 0===e.n&&0===this.n?m(0,1):m(e.n*this.n,w(e.n,this.n)*w(e.d,this.d))},ceil:function(a){a=Math.pow(10,a||0);return isNaN(this.n)||isNaN(this.d)?new p(NaN):m(Math.ceil(a*this.s*this.n/this.d),a)},floor:function(a){a=Math.pow(10, +a||0);return isNaN(this.n)||isNaN(this.d)?new p(NaN):m(Math.floor(a*this.s*this.n/this.d),a)},round:function(a){a=Math.pow(10,a||0);return isNaN(this.n)||isNaN(this.d)?new p(NaN):m(Math.round(a*this.s*this.n/this.d),a)},roundTo:function(a,c){n(a,c);return m(this.s*Math.round(this.n*e.d/(this.d*e.n))*e.n,e.d)},inverse:function(){return m(this.s*this.d,this.n)},pow:function(a,c){n(a,c);if(1===e.d)return 0>e.s?m(Math.pow(this.s*this.d,e.n),Math.pow(this.n,e.n)):m(Math.pow(this.s*this.n,e.n),Math.pow(this.d, +e.n));if(0>this.s)return null;var b=A(this.n),d=A(this.d),f=1,l=1,k;for(k in b)if("1"!==k){if("0"===k){f=0;break}b[k]*=e.n;if(0===b[k]%e.d)b[k]/=e.d;else return null;f*=Math.pow(k,b[k])}for(k in d)if("1"!==k){d[k]*=e.n;if(0===d[k]%e.d)d[k]/=e.d;else return null;l*=Math.pow(k,d[k])}return 0>e.s?m(l,f):m(f,l)},equals:function(a,c){n(a,c);return this.s*this.n*e.d===e.s*e.n*this.d},compare:function(a,c){n(a,c);var b=this.s*this.n*e.d-e.s*e.n*this.d;return(0<b)-(0>b)},simplify:function(a){if(isNaN(this.n)|| +isNaN(this.d))return this;a=a||.001;for(var c=this.abs(),b=c.toContinued(),d=1;d<b.length;d++){for(var f=m(b[d-1],1),l=d-2;0<=l;l--)f=f.inverse().add(b[l]);if(Math.abs(f.sub(c).valueOf())<a)return f.mul(this.s)}return this},divisible:function(a,c){n(a,c);return!(!(e.n*this.d)||this.n*e.d%(e.n*this.d))},valueOf:function(){return this.s*this.n/this.d},toFraction:function(a){var c,b="",d=this.n,f=this.d;0>this.s&&(b+="-");1===f?b+=d:(a&&0<(c=Math.floor(d/f))&&(b=b+c+" ",d%=f),b=b+d+"/",b+=f);return b}, +toLatex:function(a){var c,b="",d=this.n,f=this.d;0>this.s&&(b+="-");1===f?b+=d:(a&&0<(c=Math.floor(d/f))&&(b+=c,d%=f),b=b+"\\frac{"+d+"}{"+f,b+="}");return b},toContinued:function(){var a=this.n,c=this.d,b=[];if(isNaN(a)||isNaN(c))return b;do{b.push(Math.floor(a/c));var d=a%c;a=c;c=d}while(1!==a);return b},toString:function(a){var c=this.n,b=this.d;if(isNaN(c)||isNaN(b))return"NaN";var d;a:{for(d=b;0===d%2;d/=2);for(;0===d%5;d/=5);if(1===d)d=0;else{for(var f=10%d,l=1;1!==f;l++)if(f=10*f%d,2E3<l){d= +0;break a}d=l}}a:{f=1;l=10;for(var k=d,t=1;0<k;l=l*l%b,k>>=1)k&1&&(t=t*l%b);l=t;for(k=0;300>k;k++){if(f===l){l=k;break a}f=10*f%b;l=10*l%b}l=0}f=0>this.s?"-":"";f+=c/b|0;(c=c%b*10)&&(f+=".");if(d){for(a=l;a--;)f+=c/b|0,c%=b,c*=10;f+="(";for(a=d;a--;)f+=c/b|0,c%=b,c*=10;f+=")"}else for(a=a||15;c&&a--;)f+=c/b|0,c%=b,c*=10;return f}};"object"===typeof exports?(Object.defineProperty(exports,"__esModule",{value:!0}),exports["default"]=p,module.exports=p):B.Fraction=p})(this);
\ No newline at end of file diff --git a/node_modules/fraction.js/package.json b/node_modules/fraction.js/package.json new file mode 100644 index 0000000..085d287 --- /dev/null +++ b/node_modules/fraction.js/package.json @@ -0,0 +1,55 @@ +{ + "name": "fraction.js", + "title": "fraction.js", + "version": "4.3.7", + "homepage": "https://www.xarg.org/2014/03/rational-numbers-in-javascript/", + "bugs": "https://github.com/rawify/Fraction.js/issues", + "description": "A rational number library", + "keywords": [ + "math", + "fraction", + "rational", + "rationals", + "number", + "parser", + "rational numbers" + ], + "author": { + "name": "Robert Eisele", + "email": "robert@raw.org", + "url": "https://raw.org/" + }, + "type": "module", + "main": "fraction.cjs", + "exports": { + ".": { + "import": "./fraction.js", + "require": "./fraction.cjs", + "types": "./fraction.d.ts" + } + }, + "types": "./fraction.d.ts", + "private": false, + "readmeFilename": "README.md", + "directories": { + "example": "examples" + }, + "license": "MIT", + "repository": { + "type": "git", + "url": "git://github.com/rawify/Fraction.js.git" + }, + "funding": { + "type": "patreon", + "url": "https://github.com/sponsors/rawify" + }, + "engines": { + "node": "*" + }, + "scripts": { + "test": "mocha tests/*.js" + }, + "devDependencies": { + "mocha": "*" + } +} |