summaryrefslogtreecommitdiff
path: root/node_modules/fraction.js/README.md
diff options
context:
space:
mode:
Diffstat (limited to 'node_modules/fraction.js/README.md')
-rw-r--r--node_modules/fraction.js/README.md466
1 files changed, 466 insertions, 0 deletions
diff --git a/node_modules/fraction.js/README.md b/node_modules/fraction.js/README.md
new file mode 100644
index 0000000..7d3f31a
--- /dev/null
+++ b/node_modules/fraction.js/README.md
@@ -0,0 +1,466 @@
+# Fraction.js - ℚ in JavaScript
+
+[![NPM Package](https://img.shields.io/npm/v/fraction.js.svg?style=flat)](https://npmjs.org/package/fraction.js "View this project on npm")
+[![MIT license](http://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)
+
+
+Tired of inprecise numbers represented by doubles, which have to store rational and irrational numbers like PI or sqrt(2) the same way? Obviously the following problem is preventable:
+
+```javascript
+1 / 98 * 98 // = 0.9999999999999999
+```
+
+If you need more precision or just want a fraction as a result, just include *Fraction.js*:
+
+```javascript
+var Fraction = require('fraction.js');
+// or
+import Fraction from 'fraction.js';
+```
+
+and give it a trial:
+
+```javascript
+Fraction(1).div(98).mul(98) // = 1
+```
+
+Internally, numbers are represented as *numerator / denominator*, which adds just a little overhead. However, the library is written with performance and accuracy in mind, which makes it the perfect basis for [Polynomial.js](https://github.com/infusion/Polynomial.js) and [Math.js](https://github.com/josdejong/mathjs).
+
+Convert decimal to fraction
+===
+The simplest job for fraction.js is to get a fraction out of a decimal:
+```javascript
+var x = new Fraction(1.88);
+var res = x.toFraction(true); // String "1 22/25"
+```
+
+Examples / Motivation
+===
+A simple example might be
+
+```javascript
+var f = new Fraction("9.4'31'"); // 9.4313131313131...
+f.mul([-4, 3]).mod("4.'8'"); // 4.88888888888888...
+```
+The result is
+
+```javascript
+console.log(f.toFraction()); // -4154 / 1485
+```
+You could of course also access the sign (s), numerator (n) and denominator (d) on your own:
+```javascript
+f.s * f.n / f.d = -1 * 4154 / 1485 = -2.797306...
+```
+
+If you would try to calculate it yourself, you would come up with something like:
+
+```javascript
+(9.4313131 * (-4 / 3)) % 4.888888 = -2.797308133...
+```
+
+Quite okay, but yea - not as accurate as it could be.
+
+
+Laplace Probability
+===
+Simple example. What's the probability of throwing a 3, and 1 or 4, and 2 or 4 or 6 with a fair dice?
+
+P({3}):
+```javascript
+var p = new Fraction([3].length, 6).toString(); // 0.1(6)
+```
+
+P({1, 4}):
+```javascript
+var p = new Fraction([1, 4].length, 6).toString(); // 0.(3)
+```
+
+P({2, 4, 6}):
+```javascript
+var p = new Fraction([2, 4, 6].length, 6).toString(); // 0.5
+```
+
+Convert degrees/minutes/seconds to precise rational representation:
+===
+
+57+45/60+17/3600
+```javascript
+var deg = 57; // 57°
+var min = 45; // 45 Minutes
+var sec = 17; // 17 Seconds
+
+new Fraction(deg).add(min, 60).add(sec, 3600).toString() // -> 57.7547(2)
+```
+
+
+Rational approximation of irrational numbers
+===
+
+Now it's getting messy ;d To approximate a number like *sqrt(5) - 2* with a numerator and denominator, you can reformat the equation as follows: *pow(n / d + 2, 2) = 5*.
+
+Then the following algorithm will generate the rational number besides the binary representation.
+
+```javascript
+var x = "/", s = "";
+
+var a = new Fraction(0),
+ b = new Fraction(1);
+for (var n = 0; n <= 10; n++) {
+
+ var c = a.add(b).div(2);
+
+ console.log(n + "\t" + a + "\t" + b + "\t" + c + "\t" + x);
+
+ if (c.add(2).pow(2) < 5) {
+ a = c;
+ x = "1";
+ } else {
+ b = c;
+ x = "0";
+ }
+ s+= x;
+}
+console.log(s)
+```
+
+The result is
+
+```
+n a[n] b[n] c[n] x[n]
+0 0/1 1/1 1/2 /
+1 0/1 1/2 1/4 0
+2 0/1 1/4 1/8 0
+3 1/8 1/4 3/16 1
+4 3/16 1/4 7/32 1
+5 7/32 1/4 15/64 1
+6 15/64 1/4 31/128 1
+7 15/64 31/128 61/256 0
+8 15/64 61/256 121/512 0
+9 15/64 121/512 241/1024 0
+10 241/1024 121/512 483/2048 1
+```
+Thus the approximation after 11 iterations of the bisection method is *483 / 2048* and the binary representation is 0.00111100011 (see [WolframAlpha](http://www.wolframalpha.com/input/?i=sqrt%285%29-2+binary))
+
+
+I published another example on how to approximate PI with fraction.js on my [blog](http://www.xarg.org/2014/03/precise-calculations-in-javascript/) (Still not the best idea to approximate irrational numbers, but it illustrates the capabilities of Fraction.js perfectly).
+
+
+Get the exact fractional part of a number
+---
+```javascript
+var f = new Fraction("-6.(3416)");
+console.log("" + f.mod(1).abs()); // 0.(3416)
+```
+
+Mathematical correct modulo
+---
+The behaviour on negative congruences is different to most modulo implementations in computer science. Even the *mod()* function of Fraction.js behaves in the typical way. To solve the problem of having the mathematical correct modulo with Fraction.js you could come up with this:
+
+```javascript
+var a = -1;
+var b = 10.99;
+
+console.log(new Fraction(a)
+ .mod(b)); // Not correct, usual Modulo
+
+console.log(new Fraction(a)
+ .mod(b).add(b).mod(b)); // Correct! Mathematical Modulo
+```
+
+fmod() impreciseness circumvented
+---
+It turns out that Fraction.js outperforms almost any fmod() implementation, including JavaScript itself, [php.js](http://phpjs.org/functions/fmod/), C++, Python, Java and even Wolframalpha due to the fact that numbers like 0.05, 0.1, ... are infinite decimal in base 2.
+
+The equation *fmod(4.55, 0.05)* gives *0.04999999999999957*, wolframalpha says *1/20*. The correct answer should be **zero**, as 0.05 divides 4.55 without any remainder.
+
+
+Parser
+===
+
+Any function (see below) as well as the constructor of the *Fraction* class parses its input and reduce it to the smallest term.
+
+You can pass either Arrays, Objects, Integers, Doubles or Strings.
+
+Arrays / Objects
+---
+```javascript
+new Fraction(numerator, denominator);
+new Fraction([numerator, denominator]);
+new Fraction({n: numerator, d: denominator});
+```
+
+Integers
+---
+```javascript
+new Fraction(123);
+```
+
+Doubles
+---
+```javascript
+new Fraction(55.4);
+```
+
+**Note:** If you pass a double as it is, Fraction.js will perform a number analysis based on Farey Sequences. If you concern performance, cache Fraction.js objects and pass arrays/objects.
+
+The method is really precise, but too large exact numbers, like 1234567.9991829 will result in a wrong approximation. If you want to keep the number as it is, convert it to a string, as the string parser will not perform any further observations. If you have problems with the approximation, in the file `examples/approx.js` is a different approximation algorithm, which might work better in some more specific use-cases.
+
+
+Strings
+---
+```javascript
+new Fraction("123.45");
+new Fraction("123/45"); // A rational number represented as two decimals, separated by a slash
+new Fraction("123:45"); // A rational number represented as two decimals, separated by a colon
+new Fraction("4 123/45"); // A rational number represented as a whole number and a fraction
+new Fraction("123.'456'"); // Note the quotes, see below!
+new Fraction("123.(456)"); // Note the brackets, see below!
+new Fraction("123.45'6'"); // Note the quotes, see below!
+new Fraction("123.45(6)"); // Note the brackets, see below!
+```
+
+Two arguments
+---
+```javascript
+new Fraction(3, 2); // 3/2 = 1.5
+```
+
+Repeating decimal places
+---
+*Fraction.js* can easily handle repeating decimal places. For example *1/3* is *0.3333...*. There is only one repeating digit. As you can see in the examples above, you can pass a number like *1/3* as "0.'3'" or "0.(3)", which are synonym. There are no tests to parse something like 0.166666666 to 1/6! If you really want to handle this number, wrap around brackets on your own with the function below for example: 0.1(66666666)
+
+Assume you want to divide 123.32 / 33.6(567). [WolframAlpha](http://www.wolframalpha.com/input/?i=123.32+%2F+%2812453%2F370%29) states that you'll get a period of 1776 digits. *Fraction.js* comes to the same result. Give it a try:
+
+```javascript
+var f = new Fraction("123.32");
+console.log("Bam: " + f.div("33.6(567)"));
+```
+
+To automatically make a number like "0.123123123" to something more Fraction.js friendly like "0.(123)", I hacked this little brute force algorithm in a 10 minutes. Improvements are welcome...
+
+```javascript
+function formatDecimal(str) {
+
+ var comma, pre, offset, pad, times, repeat;
+
+ if (-1 === (comma = str.indexOf(".")))
+ return str;
+
+ pre = str.substr(0, comma + 1);
+ str = str.substr(comma + 1);
+
+ for (var i = 0; i < str.length; i++) {
+
+ offset = str.substr(0, i);
+
+ for (var j = 0; j < 5; j++) {
+
+ pad = str.substr(i, j + 1);
+
+ times = Math.ceil((str.length - offset.length) / pad.length);
+
+ repeat = new Array(times + 1).join(pad); // Silly String.repeat hack
+
+ if (0 === (offset + repeat).indexOf(str)) {
+ return pre + offset + "(" + pad + ")";
+ }
+ }
+ }
+ return null;
+}
+
+var f, x = formatDecimal("13.0123123123"); // = 13.0(123)
+if (x !== null) {
+ f = new Fraction(x);
+}
+```
+
+Attributes
+===
+
+The Fraction object allows direct access to the numerator, denominator and sign attributes. It is ensured that only the sign-attribute holds sign information so that a sign comparison is only necessary against this attribute.
+
+```javascript
+var f = new Fraction('-1/2');
+console.log(f.n); // Numerator: 1
+console.log(f.d); // Denominator: 2
+console.log(f.s); // Sign: -1
+```
+
+
+Functions
+===
+
+Fraction abs()
+---
+Returns the actual number without any sign information
+
+Fraction neg()
+---
+Returns the actual number with flipped sign in order to get the additive inverse
+
+Fraction add(n)
+---
+Returns the sum of the actual number and the parameter n
+
+Fraction sub(n)
+---
+Returns the difference of the actual number and the parameter n
+
+Fraction mul(n)
+---
+Returns the product of the actual number and the parameter n
+
+Fraction div(n)
+---
+Returns the quotient of the actual number and the parameter n
+
+Fraction pow(exp)
+---
+Returns the power of the actual number, raised to an possible rational exponent. If the result becomes non-rational the function returns `null`.
+
+Fraction mod(n)
+---
+Returns the modulus (rest of the division) of the actual object and n (this % n). It's a much more precise [fmod()](#fmod-impreciseness-circumvented) if you like. Please note that *mod()* is just like the modulo operator of most programming languages. If you want a mathematical correct modulo, see [here](#mathematical-correct-modulo).
+
+Fraction mod()
+---
+Returns the modulus (rest of the division) of the actual object (numerator mod denominator)
+
+Fraction gcd(n)
+---
+Returns the fractional greatest common divisor
+
+Fraction lcm(n)
+---
+Returns the fractional least common multiple
+
+Fraction ceil([places=0-16])
+---
+Returns the ceiling of a rational number with Math.ceil
+
+Fraction floor([places=0-16])
+---
+Returns the floor of a rational number with Math.floor
+
+Fraction round([places=0-16])
+---
+Returns the rational number rounded with Math.round
+
+Fraction roundTo(multiple)
+---
+Rounds a fraction to the closest multiple of another fraction.
+
+Fraction inverse()
+---
+Returns the multiplicative inverse of the actual number (n / d becomes d / n) in order to get the reciprocal
+
+Fraction simplify([eps=0.001])
+---
+Simplifies the rational number under a certain error threshold. Ex. `0.333` will be `1/3` with `eps=0.001`
+
+boolean equals(n)
+---
+Check if two numbers are equal
+
+int compare(n)
+---
+Compare two numbers.
+```
+result < 0: n is greater than actual number
+result > 0: n is smaller than actual number
+result = 0: n is equal to the actual number
+```
+
+boolean divisible(n)
+---
+Check if two numbers are divisible (n divides this)
+
+double valueOf()
+---
+Returns a decimal representation of the fraction
+
+String toString([decimalPlaces=15])
+---
+Generates an exact string representation of the actual object. For repeated decimal places all digits are collected within brackets, like `1/3 = "0.(3)"`. For all other numbers, up to `decimalPlaces` significant digits are collected - which includes trailing zeros if the number is getting truncated. However, `1/2 = "0.5"` without trailing zeros of course.
+
+**Note:** As `valueOf()` and `toString()` are provided, `toString()` is only called implicitly in a real string context. Using the plus-operator like `"123" + new Fraction` will call valueOf(), because JavaScript tries to combine two primitives first and concatenates them later, as string will be the more dominant type. `alert(new Fraction)` or `String(new Fraction)` on the other hand will do what you expect. If you really want to have control, you should call `toString()` or `valueOf()` explicitly!
+
+String toLatex(excludeWhole=false)
+---
+Generates an exact LaTeX representation of the actual object. You can see a [live demo](http://www.xarg.org/2014/03/precise-calculations-in-javascript/) on my blog.
+
+The optional boolean parameter indicates if you want to exclude the whole part. "1 1/3" instead of "4/3"
+
+String toFraction(excludeWhole=false)
+---
+Gets a string representation of the fraction
+
+The optional boolean parameter indicates if you want to exclude the whole part. "1 1/3" instead of "4/3"
+
+Array toContinued()
+---
+Gets an array of the fraction represented as a continued fraction. The first element always contains the whole part.
+
+```javascript
+var f = new Fraction('88/33');
+var c = f.toContinued(); // [2, 1, 2]
+```
+
+Fraction clone()
+---
+Creates a copy of the actual Fraction object
+
+
+Exceptions
+===
+If a really hard error occurs (parsing error, division by zero), *fraction.js* throws exceptions! Please make sure you handle them correctly.
+
+
+
+Installation
+===
+Installing fraction.js is as easy as cloning this repo or use the following command:
+
+```
+npm install fraction.js
+```
+
+Using Fraction.js with the browser
+===
+```html
+<script src="fraction.js"></script>
+<script>
+ console.log(Fraction("123/456"));
+</script>
+```
+
+Using Fraction.js with TypeScript
+===
+```js
+import Fraction from "fraction.js";
+console.log(Fraction("123/456"));
+```
+
+Coding Style
+===
+As every library I publish, fraction.js is also built to be as small as possible after compressing it with Google Closure Compiler in advanced mode. Thus the coding style orientates a little on maxing-out the compression rate. Please make sure you keep this style if you plan to extend the library.
+
+
+Precision
+===
+Fraction.js tries to circumvent floating point errors, by having an internal representation of numerator and denominator. As it relies on JavaScript, there is also a limit. The biggest number representable is `Number.MAX_SAFE_INTEGER / 1` and the smallest is `-1 / Number.MAX_SAFE_INTEGER`, with `Number.MAX_SAFE_INTEGER=9007199254740991`. If this is not enough, there is `bigfraction.js` shipped experimentally, which relies on `BigInt` and should become the new Fraction.js eventually.
+
+Testing
+===
+If you plan to enhance the library, make sure you add test cases and all the previous tests are passing. You can test the library with
+
+```
+npm test
+```
+
+
+Copyright and licensing
+===
+Copyright (c) 2023, [Robert Eisele](https://raw.org/)
+Licensed under the MIT license.